FIRST-ORDER
DIFFERENTIAL EQUATIONS

OVERVIEW In Section 4.7 we introduced differential equations of the form dy/dx = f(x),
where f is given and y is an unknown function of x. When f is continuous over some inter-
val, we found the general solution y(x) by integration, y = f f(x) dx. In Section 7.5 we
solved separable differential equations. Such equations arise when investigating exponen-
tial growth or decay, for example. In this chapter we study some other types of first-order
differential equations. They involve only first derivatives of the unknown function.

Solutions, Slope Fields, and Picard’s Theorem

We begin this section by defining general differential equations involving first derivatives.
We then look at slope fields, which give a geometric picture of the solutions to such equa-
tions. Finally we present Picard’s Theorem, which gives conditions under which first-order
differential equations have exactly one solution.

General First-Order Differential Equations and Solutions

A first-order differential equation is an equation
dy
= Ty &)

in which f(x, y) is a function of two variables defined on a region in the xy-plane. The
equation is of first order because it involves only the first derivative dy/dx (and not
higher-order derivatives). We point out that the equations

;o d  _
y _f(an’) and dxy f(x,J’)
are equivalent to Equation (1) and all three forms will be used interchangeably in the text.

A solution of Equation (1) is a differentiable function y = y(x) defined on an interval
I of x-values (perhaps infinite) such that

d
L300 = f0,p()
on that interval. That is, when y(x) and its derivative y'(x) are substituted into Equation (1),

the resulting equation is true for all x over the interval /. The general solution to a first-
order differential equation is a solution that contains all possible solutions. The general
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solution always contains an arbitrary constant, but having this property doesn’t mean a
solution is the general solution. That is, a solution may contain an arbitrary constant with-
out being the general solution. Establishing that a solution is the general solution may re-
quire deeper results from the theory of differential equations and is best studied in a more
advanced course.

EXAMPLE 1  Show that every member of the family of functions

y=%+2

is a solution of the first-order differential equation

dy 1
a:f(z_J’)

on the interval (0, 0©), where C is any constant.

Solution Differentiating y = C/x + 2 gives
dy d (1 C
i Ca (X +0= —;.

Thus we need only verify that for all x (0, 00),

53 (5+9)

This last equation follows immediately by expanding the expression on the right-hand side:

- (§+)-49) -5

Therefore, for every value of C, the function y = C/x + 2 is a solution of the differential
equation. [

As was the case in finding antiderivatives, we often need a particular rather than the
general solution to a first-order differential equation y' = f(x, y). The particular solution
satisfying the initial condition y(xg) = yy is the solution y = y(x) whose value is y; when
x = x¢. Thus the graph of the particular solution passes through the point (xg, yo) in the
xy-plane. A first-order initial value problem is a differential equation y' = f(x, y)
whose solution must satisfy an initial condition y(xg) = yy.

EXAMPLE 2  Show that the function
y=x+1) - %e"
is a solution to the first-order initial value problem

dy
a_y_x’ J’(O)—

W

Solution The equation

& _
ax r

is a first-order differential equation with f(x,y) = y — x.
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y 1 On the left side of the equation:
2F y=Gx+1D—ze
(0%) 1E - 2 dy:d(x-kl—lex): —lex
R A dx  dx 3 3
- - 1k 2 N On the right side of the equation:
—2r 1 1
3k y—x=(x+1)—§e"—x=l—§ex.
4
The function satisfies the initial condition because
FIGURE 16.1 Graph of the solution 0) = {(x - ;e"} o % _ %
x=0

y=Kx+1) - %e" to the differential

equation dy/dx = y — x, with initial The graph of the function is shown in Figure 16.1.

. _2
condition y(0) = 3 (Example 2). Slope Fields: Viewing Solution Curves

Each time we specify an initial condition y(xg) = y, for the solution of a differential equa-
tion y' = f(x, y), the solution curve (graph of the solution) is required to pass through the
point (xg, yo) and to have slope f(xo, yo) there. We can picture these slopes graphically by
drawing short line segments of slope f(x, y) at selected points (x, y) in the region of the
xy-plane that constitutes the domain of f. Each segment has the same slope as the solution
curve through (x, y) and so is tangent to the curve there. The resulting picture is called a
slope field (or direction field) and gives a visualization of the general shape of the solu-
tion curves. Figure 16.2a shows a slope field, with a particular solution sketched into it in
Figure 16.2b. We see how these line segments indicate the direction the solution curve

takes at each point it passes through.
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FIGURE 16.2 (a) Slope field fordfi = y — x. (b) The particular solution

curve through the point (0, %) (Example 2).

Figure 16.3 shows three slope fields and we see how the solution curves behave by
following the tangent line segments in these fields.
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0 for which the

graph lies along the x-axis. A second solution is found by separating variables and inte-

grating, as we did in Section 7.5. This leads to

»0) =0
forx = 0
forx > 0

>

(x/5)° both satisfy the initial condition y(0)

y4/5

b
dx

0 and y

The initial value problem
We have found a differential equation with multiple solutions satisfying the same ini-

tial condition. This differential equation has even more solutions. For instance, two addi-

Constructing a slope field with pencil and paper can be quite tedious. All our exam-
tional solutions are

renditions, slope segments are sometimes portrayed with arrows, as they are here. This is not to
ples were generated by a computer.

FIGURE 16.3 Slope fields (top row) and selected solution curves (bottom row). In computer

be taken as an indication that slopes have directions, however, for they do not.
lution. Some conditions must be imposed to assure the existence of exactly one solution,

tion even exists. A second important question asks whether there can be more than one so-
as illustrated in the next example.

A basic question in the study of first-order initial value problems concerns whether a solu-

has more than one solution. One solution is the constant function y(x)

The Existence of Solutions
The two solutions y

EXAMPLE 3
(Figure 16.4).

(7,5.4)
= 0.

(5, 1)

1+
1+
5+

FIGURE 16.4 The graph of the solution
y = (x/5)° to the initial value problem in

Example 3. Another solution is y

(=5.-1)
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and

5
<)5C> , forx=20
y = .

0, forx >0 n

In many applications it is desirable to know that there is exactly one solution to an ini-
tial value problem. Such a solution is said to be unique. Picard’s Theorem gives conditions
under which there is precisely one solution. It guarantees both the existence and unique-
ness of a solution.

THEOREM 1—Picard’s Theorem Suppose that both f(x, y) and its partial
derivative df/dy are continuous on the interior of a rectangle R, and that (xo, yo) is
an interior point of R. Then the initial value problem

dy
2 = f@»). X)) =w (2)

has a unique solution y = y(x) for x in some open interval containing xq.

The differential equation in Example 3 fails to satisfy the conditions of Picard’s Theorem.
Although the function f(x, y) = y4/ 5 from Example 3 is continuous in the entire xy-plane,
the partial derivative df/dy = (4/5) yil/ 3 fails to be continuous at the point (0, 0) speci-
fied by the initial condition. Thus we found the possibility of more than one solution to the
given initial value problem. Moreover, the partial derivative df/dy is not even defined
where y = 0. However, the initial value problem of Example 3 does have unique solutions
whenever the initial condition y(xy) = yo has yy # 0.

Picard’s Iteration Scheme

Picard’s Theorem is proved by applying Picard’s iteration scheme, which we now intro-
duce. We begin by noticing that any solution to the initial value problem of Equations (2)
must also satisfy the integral equation

yx) =y + / f@, (1) dt (3)

because

X dy 3
/xo 2 4t = ) = ylxo).

The converse is also true: If y(x) satisfies Equation (3), then y" = f(x, y(x)) and y(x¢) = yo.
So Equations (2) may be replaced by Equation (3). This sets the stage for Picard’s interation
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method: In the integrand in Equation (3), replace y(¢) by the constant yy, then integrate and
call the resulting right-hand side of Equation (3) y;(x):

»nx) =yo + / f(t, yo) dt. (4)

This starts the process. To keep it going, we use the iterative formulas

yn-H(x) =Jo + / f(tayn(t)) dt. (5)

The proof of Picard’s Theorem consists of showing that this process produces a sequence of
functions {y,(x)} that converge to a function y(x) that satisfies Equations (2) and (3) for
values of x sufficiently near x(. (The proof also shows that the solution is unique; that is,
no other method will lead to a different solution.)

The following examples illustrate the Picard iteration scheme, but in most practical
cases the computations soon become too burdensome to continue.

EXAMPLE 4  Tllustrate the Picard iteration scheme for the initial value problem

y=x—-y  y0)=1

Solution For the problem at hand, f(x, y) = x — y, and Equation (4) becomes

»x) =1 +/ (t— 1adt yo =1
0

x2

2

1+ — X.

If we now use Equation (5) withn = 1, we get

x 2
1+ / (l‘ -1 - % + l‘> dt Substitute y; for y in f(, y).
0

x3

=l—x+x2—z.

ya(x)

The next iteration, with n = 2, gives

X 3
yix) =1+ / <t —1+t—2+ t6) dt Substitute y, for y in (2, y).
0

3 4
_ 2 _ X X
1 —x+x 3+4!.

In this example it is possible to find the exact solution because
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is a first-order differential equation that is linear in y. You will learn how to find the gen-
eral solution

y=x—1+Ce™
in the next section. The solution of the initial value problem is then
y=x—1+2"

If we substitute the Maclaurin series for e ™ in this particular solution, we get

2 3 4
x X x
y=x—1+2<1—x+2!—3!+4!— )
3 4 5
-1 - 2 _ X7 XX
=1—-x+x 3+2<4! 5!—1— >,

and we see that the Picard scheme producing y;(x) has given us the first four terms of this
expansion. [

In the next example we cannot find a solution in terms of elementary functions. The
Picard scheme is one way we could get an idea of how the solution behaves near the initial
point.

EXAMPLE 5  Find y,(x) forn = 0, 1, 2, and 3 for the initial value problem

v =x+y%L  p0) =0.

Solution By definition, yy(x) = »(0) = 0. The other functions y,(x) are generated by the
integral representation

ym@=0ﬁ[V+@mﬂm

x* *
:3+/owww
0
We successively calculate
3
nw =%,
3
X X
y0) =3 * s

3 7 11 15
3 X x
¥ =5 T3 T 2079 T 59535 -

In Section 16.4 we introduce numerical methods for solving initial value problems
like those in Examples 4 and 5.
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EXERCISES 16.1

In Exercises 1-4, match the differential equations with their slope

fields, graphed here.
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13. ' =xy, (1) =1
14. yy =x+y, »0)=0
15. y' =x+y, y0) =1
16. y) =2x —y, y(—1) =1
17. Show that the solution of the initial value problem
Y =xty, yx) = n
is
y=—1—x+ (1 +xp+ yp)e* ™.

18. What integral equation is equivalent to the initial value problem

V' = f(x), y(xo) = yo?

COMPUTER EXPLORATIONS

In Exercises 19-24, obtain a slope field and add to it graphs of the so-
lution curves passing through the given points.

19. y' = y with

a. (0, 1) b. 0,2) e (0,—1)
20. y' = 2(y — 4) with

a. (0,1) b. (0,4) e (0,5)
21. y' = y(x + y) with

a. (0,1) b. (0,-2) ¢ (0,1/4)  d. (—1,-1)
22. y' = y* with

a. (0, 1) b. 0,2) e (0,—1)  d. (0,0)
23. y' = (y — I)(x + 2) with

a. (0,-1) b (0,1) e (0,3  d(1,—1
24. 5 = - with

a. (0,2) b. (0, —6) c. (—2V3,-4)

First-Order Linear Equations

16.2
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In Exercises 25 and 26, obtain a slope field and graph the particular
solution over the specified interval. Use your CAS DE solver to find
the general solution of the differential equation.

25. A logistic equation )" = y(2 — y), ¥(0) = 1/2;
0=x=4 0=y=3

26. y' = (sinx)(siny), »(0) =2, —-6=x=6, -6=y=6

Exercises 27 and 28 have no explicit solution in terms of elementary
functions. Use a CAS to explore graphically each of the differential
equations.

27. y  =cos(2x —y), y(0)=2; 0=x=5 0=yp=35

28. A Gompertz equation )’ = y(1/2 — Iny), »(0) = 1/3;
0=x=4 0=y=3

29. Use a CAS to find the solutions of y' + y = f(x) subject to the
initial condition y(0) = 0, if f(x) is
a. 2x b. sin 2x c. 3e%? d. 2¢7 cos 2x.

Graph all four solutions over the interval —2 = x = 6 to com-
pare the results.

30. a. Use a CAS to plot the slope field of the differential equation

;3 4Ax+2
20y = 1)

over the region —3 = x = 3and -3 =y = 3.

b. Separate the variables and use a CAS integrator to find the
general solution in implicit form.

c. Using a CAS implicit function grapher, plot solution curves
for the arbitrary constant values C = —6, —4, —2,0,2,4,6.

d. Find and graph the solution that satisfies the initial condition
»(0) = —1.

A first-order linear differential equation is one that can be written in the form

d
=+ Py = 0, 1)

where P and Q are continuous functions of x. Equation (1) is the linear equation’s
standard form. Since the exponential growth/decay equation dy/dx = ky (Section 7.5)
can be put in the standard form

dy
a - ky = 0,
we see it is a linear equation with P(x) = —k and Q(x) = 0. Equation (1) is linear (in y)

because y and its derivative dy/dx occur only to the first power, are not multiplied together,

nor do they appear as the argument of a function (such as siny, e’, or Vdy/ dx).
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EXAMPLE 1  Put the following equation in standard form:

dy )
X =X + 3y, x>0.

Solution

dy 5
X =X + 3y

b
dx

dy 3 _ Standard form with P(x) = —3/x

dx XV =X and O(x) = x

3
=x+t 3y Divide by x

Notice that P(x) is —3/x, not +3/x. The standard form is y* + P(x)y = Q(x), so the mi-
nus sign is part of the formula for P(x). [

Solving Linear Equations

We solve the equation

b

o+ Py = 0) 2)
by multiplying both sides by a positive function v(x) that transforms the left-hand side into
the derivative of the product v(x) + y. We will show how to find v in a moment, but first we
want to show how, once found, it provides the solution we seek.

Here is why multiplying by v(x) works:

dy Original equation is
dx + P(x)y = 0(x) in standard form.
d
v(x) d%c} + P(x)v(x)y = v(x)0(x) Multiply by positive v(x).
d v(x) is chosen to make
L (1(2)y) = v(x)0() B
dx . dx "
Integra vith respec
v(x) y = / v(x)Q(x) dx tstj'émte with respect

y= ﬁ / V(x)O() dx 3)

Equation (3) expresses the solution of Equation (2) in terms of the function v(x) and O(x).
We call v(x) an integrating factor for Equation (2) because its presence makes the equa-

tion integrable.
Why doesn’t the formula for P(x) appear in the solution as well? It does, but indi-

rectly, in the construction of the positive function v(x). We have

d dy B
E (Uy) =v a + Pvy Condition imposed on v

d
v % +y % =v % + Puvy Product Rule for derivatives
dv dy

= Pvy The terms v T cancel.
dx

Y dx
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16.2 First-Order Linear Equations

This last equation will hold if

—— = Pv
dx
dv
BT P dx Variables separated, v > 0
dv .
/ o = P dx Integrate both sides.
Since v > 0, we do not need absolute
Inv= [ Pdx PR
value signs in In v.
elnu = e‘[de Exponentiate both sides to solve for v.

v = ol P

16-11

(4)

Thus a formula for the general solution to Equation (1) is given by Equation (3), where
v(x) is given by Equation (4). However, rather than memorizing the formula, just remem-
ber how to find the integrating factor once you have the standard form so P(x) is correctly

identified.

integrating factor v(x) = e/ 7™ % and integrate both sides.

To solve the linear equation y’ + P(x)y = Q(x), multiply both sides by the

When you integrate the left-hand side product in this procedure, you always obtain the
product v(x)y of the integrating factor and solution function y because of the way v is

defined.

EXAMPLE 2  Solve the equation

dy 5
R T + 3y, x> 0.

Solution First we put the equation in standard form (Example 1):

3
dx_xy_x’

so P(x) = —3/x is identified.
The integrating factor is

v(x) — efP(x)dx — ef(—S/x)dx
Constant of integration is 0,

_ ,-3In|x| ant ol A
=e S0 v is as simple as possible.
= g 3Mnx x>0

-3 1
— elnx -
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Next we multiply both sides of the standard form by v(x) and integrate:

1o (v 3\ _ 1.
&\ XY e

1dy 31
Sde 2V T2
a%’c <x13y> = )517 Left-hand side is % (vey).

1o [,
w3 Yy = %2 X Integrate both sides.
1 1
Ly--1ic
R X

Solving this last equation for y gives the general solution:

y=x3<—)1C+C>=—x2+Cx3, x> 0.

EXAMPLE 3  Find the particular solution of
3xy)) —y =1Inx + 1, x>0,
satisfying y(1) = —2.

Solution With x > 0, we write the equation in standard form:

o1 _Inx+1
Y 3x” 3x
Then the integrating factor is given by
v = ef—dx/3x — e(—l/3)lnx — x—1/3. >0
Thus
x—]/3y = ;/(lnx + Dx 3 dx. Left-hand side is vy.

Integration by parts of the right-hand side gives
x By = —xBnx + 1) + /x4/3 dx + C.
Therefore
x By = —xBnx+1) -3+ C
or, solving for y,
y=—(Inx + 4) + Cx'3,
When x = 1 and y = —2 this last equation becomes

—2=—-(0+4)+C,
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FIGURE 16.5 The RL circuit in
Example 4.
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so
C=2.
Substitution into the equation for y gives the particular solution
y=2x1/3—lnx—4. [

In solving the linear equation in Example 2, we integrated both sides of the equation
after multiplying each side by the integrating factor. However, we can shorten the amount
of work, as in Example 3, by remembering that the left-hand side a/ways integrates into
the product v(x) - y of the integrating factor times the solution function. From Equation (3)
this means that

v(x)y = / v(x)Q(x) dx.

We need only integrate the product of the integrating factor v(x) with the right-hand side
O(x) of Equation (1) and then equate the result with v(x)y to obtain the general solution.
Nevertheless, to emphasize the role of v(x) in the solution process, we sometimes follow
the complete procedure as illustrated in Example 2.

Observe that if the function Q(x) is identically zero in the standard form given by
Equation (1), the linear equation is separable:

b
dx (X)y - Q(x)
dy
o + P(x)y =0 0(x) =0
d
7}’ = —P(x) dx Separating the variables

We now present two applied problems modeled by a first-order linear differential
equation.

RL Circuits

The diagram in Figure 16.5 represents an electrical circuit whose total resistance is a con-
stant R ohms and whose self-inductance, shown as a coil, is L henries, also a constant.
There is a switch whose terminals at @ and b can be closed to connect a constant electrical
source of V volts.
Ohm’s Law, V' = RI, has to be modified for such a circuit. The modified form is
di .
L~ +Ri=V 5

T RI=V, (5)
where i is the intensity of the current in amperes and ¢ is the time in seconds. By solving
this equation, we can predict how the current will flow after the switch is closed.

EXAMPLE 4  The switch in the RL circuit in Figure 16.5 is closed at time 1 = 0. How
will the current flow as a function of time?

Solution Equation (5) is a first-order linear differential equation for i as a function of z.
Its standard form is

; (6)
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R~
N

i = %(1 — e RiL)

IS
(3]
S~
(9%)
\
i

FIGURE 16.6 The growth of the current
in the RL circuit in Example 4. / is the
current’s steady-state value. The number

t = L/R is the time constant of the circuit.

The current gets to within 5% of its
steady-state value in 3 time constants
(Exercise 31).

and the corresponding solution, given that i = 0 when ¢ = 0, is

_V _V
=R~ RE (7)

(Exercise 32). Since R and L are positive, —(R/L) is negative and e &2 — 0 as t — o,

Thus,

lim i = lim <V— R’fe‘m/“f) VY=L

t—>00 t—00 \ R

At any given time, the current is theoretically less than V'/R, but as time passes, the current
approaches the steady-state value J'/R. According to the equation

di

= 4 R

L 7 Ri =V,
I = V/R is the current that will flow in the circuit if either L = 0 (no inductance) or
di/dt = 0 (steady current, i = constant) (Figure 16.6).
Equation (7) expresses the solution of Equation (6) as the sum of two terms: a

steady-state solution ///R and a transient solution —(¥/R)e”®/"" that tends to zero as
t— OQ, |

Mixture Problems

A chemical in a liquid solution (or dispersed in a gas) runs into a container holding the lig-
uid (or the gas) with, possibly, a specified amount of the chemical dissolved as well. The
mixture is kept uniform by stirring and flows out of the container at a known rate. In this
process, it is often important to know the concentration of the chemical in the container at
any given time. The differential equation describing the process is based on the formula

Rate of change rate at which rate at which
of amount = chemical — chemical (8)
in container arrives departs.

If y(¢) is the amount of chemical in the container at time 7 and V(¢) is the total volume of
liquid in the container at time #, then the departure rate of the chemical at time 7 is

(@)
Departure rate = 0 (outflow rate)
[ concentration in
container at time ¢ | * (Outflow rate). ©)
Accordingly, Equation (8) becomes
d t
?); = (chemical’s arrival rate) — }I}/((t)) (outflow rate). (10)

If, say, y is measured in pounds, / in gallons, and # in minutes, the units in Equation (10) are

pounds  pounds  pounds gallons

minutes  minutes  gallons minutes




16.2 First-Order Linear Equations 16-15

EXAMPLE 5 1In an oil refinery, a storage tank contains 2000 gal of gasoline that ini-
tially has 100 b of an additive dissolved in it. In preparation for winter weather, gasoline
containing 2 1b of additive per gallon is pumped into the tank at a rate of 40 gal/min. The
well-mixed solution is pumped out at a rate of 45 gal/min. How much of the additive is in
the tank 20 min after the pumping process begins (Figure 16.7)?

@ 40 gal/min containing 2 1b/gal

45 gal/min containing % Ib/gal

FIGURE 16.7 The storage tank in Example 5 mixes input
liquid with stored liquid to produce an output liquid.

Solution Let y be the amount (in pounds) of additive in the tank at time 7. We know that
y = 100 when ¢ = 0. The number of gallons of gasoline and additive in solution in the
tank at any time ¢ is

al al
V(1) = 2000 gal + <4og. — 45 g.) (t min)
min min
= (2000 — 57) gal.
Therefore,
_ (@)
Rate out = = outflow rate Eq. (9)
40
(Y 45 Outflow rate is 45 gal/min
~ \ 2000 — 5¢ andv = 2000 — 5¢.
_ 4y b
~ 2000 — 5¢ min
Also,
al
Rate in = <2 “’) (40 g.>
gal min
_ o db_
= 80 min Eq. (10)

The differential equation modeling the mixture process is

dy 45y
ar = 80 7 5000 = 5

in pounds per minute.
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To solve this differential equation, we first write it in standard form:

dy 45
dr T 2000 — 50 = 80

Thus, P(t) = 45/(2000 — 5¢) and O(#) = 80. The integrating factor is

U(t) :edel‘:efﬁdt

= ¢™91n(2000-57) 2000 — 5¢ > 0

(2000 — 57)7°.
Multiplying both sides of the standard equation by v(#) and integrating both sides gives

d
(2000 — 51 - (di + oo y) = 80(2000 — 5¢)°

d
(2000 — 51)~° % + 45(2000 — 51)71%y = 80(2000 — 5¢)°

% [(2000 = 50)7°y] = 80(2000 — 5)~°

(2000 — 5¢) %y = / 80(2000 — 5¢) % dt

o (2000 — 57)°8
(2000 — 5¢) %y = SO-W + C.

The general solution is
y = 2(2000 — 5¢) + C(2000 — 5¢)°.
Because y = 100 when ¢ = 0, we can determine the value of C:
100 = 2(2000 — 0) + C(2000 — 0)°

3900
(2000)°

The particular solution of the initial value problem is

3900
(2000)°

y = 2(2000 — 5¢) — (2000 — 5¢)°.

The amount of additive 20 min after the pumping begins is

3900
(2000)°

$(20) = 2[2000 — 5(20)] — [2000 — 5(20)]° ~ 1342 Ib.
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Solve the differential equations in Exercises 1-14.

1.

6. (1+x)y’+y=\/);

10.
11.
12.

13.

14

x@+ =e', x>0 Zex@+2e" =1
Y ’ T odx Y
.xy’+3y=sl%, x>0
.y 4 (tanx)y = cos’x, —m/2 <x < m/2
d
x4y =1 x>0

7.2y = e + y

ey + 2eFy = 2x 9. xy —y=2xInx

dy  cosx

xaz X -2y, x>0
3 ds 2 _

(t—l)E+4(t—1)s—t+1, t>1
ds 1

t+ DS =3+ 1)+ ——, > —1

(4 DG+ =30+ )+

. odr _

smﬂ%-‘r(cosO)r—tanG, 0<6<m/2
dr .2

.tanG%-i—r—smO, 0<0<m/2

Solve the initial value problems in Exercises 15-20.

15.

16.

17.

18.

19.

20.

21.

22.

D=3 o) =1

dt y =3, y()_

dy ;

tE‘i‘Zy—l, t >0, y(Z)—l

dy .

60— +y=sin0, 6>0, yw/2)=1

do

dy 5

9?0—2y=0 secOtan®, 0 >0, y(m/3) =2
(4—1)@—2(24-)=67x2 > —1 (0) =5
o dx * e+ >V
Yooy 0) = =6

dx Xy = X, y()_

Solve the exponential growth/decay initial value problem for y as
a function of 7 thinking of the differential equation as a first-order
linear equation with P(x) = —k and Q(x) = 0:

dy

—— =ky (kconstant),

dt y(o) =)o

Solve the following initial value problem for u as a function of #:

% + %u = 0 (kand m positive constants), u(0) = ug

23.

24.

28S.

26.

27.

28.

a. as a first-order linear equation.
b. as a separable equation.

Is either of the following equations correct? Give reasons for your
answers.

a. x/%dx=xln|x|+C b. x/%dx=x1n|x|+Cx

Is either of the following equations correct? Give reasons for your
answers.

1 _
a. @/ cosxdx = tanx + C

tanx + COS X

1
b. m/ cos x dx

Salt mixture A tank initially contains 100 gal of brine in which
50 Ib of salt are dissolved. A brine containing 2 1b/gal of salt runs
into the tank at the rate of 5 gal/min. The mixture is kept uniform
by stirring and flows out of the tank at the rate of 4 gal/min.

a. At what rate (pounds per minute) does salt enter the tank at
time ¢?

b. What is the volume of brine in the tank at time #?

c. At what rate (pounds per minute) does salt leave the tank at
time ¢?

d. Write down and solve the initial value problem describing the
mixing process.

e. Find the concentration of salt in the tank 25 min after the
process starts.

Mixture problem A 200-gal tank is half full of distilled water.
Attime 7 = 0, a solution containing 0.5 1b/gal of concentrate en-
ters the tank at the rate of 5 gal/min, and the well-stirred mixture
is withdrawn at the rate of 3 gal/min.

a. At what time will the tank be full?

b. At the time the tank is full, how many pounds of concentrate
will it contain?

Fertilizer mixture A tank contains 100 gal of fresh water. A so-
lution containing 1 1b/gal of soluble lawn fertilizer runs into the
tank at the rate of 1 gal/min, and the mixture is pumped out of the
tank at the rate of 3 gal/min. Find the maximum amount of fertil-
izer in the tank and the time required to reach the maximum.

Carbon monoxide pollution An executive conference room of
a corporation contains 4500 ft* of air initially free of carbon
monoxide. Starting at time ¢ = 0, cigarette smoke containing
4% carbon monoxide is blown into the room at the rate of
0.3 ft*/min. A ceiling fan keeps the air in the room well circulated
and the air leaves the room at the same rate of 0.3 ft*/min. Find
the time when the concentration of carbon monoxide in the room
reaches 0.01%.
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29. Current in a closed RL circuit How many seconds after the
switch in an RL circuit is closed will it take the current i to reach
half of its steady-state value? Notice that the time depends on R
and L and not on how much voltage is applied.

30. Current in an open RL circuit If the switch is thrown open
after the current in an RL circuit has built up to its steady-state
value / = V/R, the decaying current (see accompanying figure)
obeys the equation

di
= 4+ R
L i Ri =0,
which is Equation (5) with ' = 0.
a. Solve the equation to express 7 as a function of 7.
b. How long after the switch is thrown will it take the current to
fall to half its original value?
c. Show that the value of the current when t = L/R is I/e. (The
significance of this time is explained in the next exercise.)

<

R~

x|~
w
x|t~

L
E 2

31. Time constants Engineers call the number L/R the time con-
stant of the RL circuit in Figure 16.6. The significance of the time
constant is that the current will reach 95% of its final value within
3 time constants of the time the switch is closed (Figure 16.6).
Thus, the time constant gives a built-in measure of how rapidly an
individual circuit will reach equilibrium.

a. Find the value of i in Equation (7) that corresponds to
t = 3L/R and show that it is about 95% of the steady-state
value I = V/R.

b. Approximately what percentage of the steady-state current
will be flowing in the circuit 2 time constants after the switch
is closed (i.e., when ¢ = 2L/R)?

32. Derivation of Equation (7) in Example 4

a. Show that the solution of the equation

di R._V

===

at1' 7L

is
1= s o,

b. Then use the initial condition i(0) = 0 to determine the value
of C. This will complete the derivation of Equation (7).

c. Show thati = V/R is a solution of Equation (6) and that
i = Ce ®/Dl gatisfies the equation

HISTORICAL BIOGRAPHY

James Bernoulli
(1654-1705)

A Bernoulli differential equation is of the form

dy .
=+ Plx)y = 0Ly

Observe that, if » = 0 or 1, the Bernoulli equation is linear.
For other values of 7, the substitution # = y' ™" transforms
the Bernoulli equation into the linear equation

% (1= PO = (1 — n)0k).

For example, in the equation

@_ :efx 2
o 7 y

we have n = 2, so thatu = y'"2 = y"! and du/dx =
—y 2 dy/dx. Then dy/dx = —y? du/dx = —u* du/dx.
Substitution into the original equation gives

odu _ e —
R B

dx
or, equivalently,

du _
Ctu=—e
o e

This last equation is linear in the (unknown) dependent
variable u.

Solve the differential equations in Exercises 33-36.

33. ) —y=—)?
35. xp) +y=y2

34. y —y = x?
36. x%y' + 2xy = >
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We now look at three applications of first-order differential equations. The first application
analyzes an object moving along a straight line while subject to a force opposing its motion.
The second is a model of population growth. The last application considers a curve or curves
intersecting each curve in a second family of curves orthogonally (that is, at right angles).

Resistance Proportional to Velocity

In some cases it is reasonable to assume that the resistance encountered by a moving object,
such as a car coasting to a stop, is proportional to the object’s velocity. The faster the object
moves, the more its forward progress is resisted by the air through which it passes. Picture
the object as a mass m moving along a coordinate line with position function s and velocity
v at time 7. From Newton’s second law of motion, the resisting force opposing the motion is

Force = mass X acceleration = m%
If the resisting force is proportional to velocity, we have
dv _ dv _  k
moas= kv or = mv (k> 0).

This is a separable differential equation representing exponential change. The solution to
the equation with initial condition v = vy at ¢t = 0 is (Section 7.5)

v = yge M, (1)

What can we learn from Equation (1)? For one thing, we can see that if m is something
large, like the mass of a 20,000-ton ore boat in Lake Erie, it will take a long time for the
velocity to approach zero (because # must be large in the exponent of the equation in order
to make kt/m large enough for v to be small). We can learn even more if we integrate
Equation (1) to find the position s as a function of time ¢.

Suppose that a body is coasting to a stop and the only force acting on it is a resistance
proportional to its speed. How far will it coast? To find out, we start with Equation (1) and
solve the initial value problem

% = yge Wmr s(0) = 0.

Integrating with respect to 7 gives

5= — 2 p-lmr 4 .
k
Substituting s = 0 when t = 0 gives
— _vom _ Yom
0= A +C and C o

The body’s position at time ¢ is therefore

S(t) = —%e—(k/m)t + % _ Yom (1 _ e—(k/m)t). (2)
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In the English system, where weight is
measured in pounds, mass is measured in
slugs. Thus,

Pounds = slugs X 32,

assuming the gravitational constant is
32 ft/sec’.

To find how far the body will coast, we find the limit of s(f) as t — 00 Since —(k/m) < 0,
we know that e %" — 0 as  — 0, so that

lim s(r) = lim “5% (1 — e~/
—00 1—>00
_vom. . g = vom
= (1-0) 7
Thus,
Distance coasted = % (3)

The number vom/k is only an upper bound (albeit a useful one). It is true to life in one
respect, at least: if m is large, it will take a lot of energy to stop the body.

EXAMPLE 1  For a 192-1b ice skater, the k£ in Equation (1) is about 1/3 slug/sec and
m = 192/32 = 6 slugs. How long will it take the skater to coast from 11 ft/sec (7.5 mph)

to 1 ft/sec? How far will the skater coast before coming to a complete stop?

Solution 'We answer the first question by solving Equation (1) for #:

1le*t/18 =1 Eq. (1) with k = 1/3,
m=6,vg=11v=1
e =1/11
—4/18 = In(1/11) = —In11

t=18In11 ~ 43 sec.

We answer the second question with Equation (3):

- vom _ 11-6
Distance coasted = .= 13

198 ft. ]

Modeling Population Growth

In Section 7.5 we modeled population growth with the Law of Exponential Change:

dP

- kP, P(0) = Py
where P is the population at time ¢, k£ > 0 is a constant growth rate, and P, is the size of the
population at time # = 0. In Section 7.5 we found the solution P = Pye’’ to this model.

To assess the model, notice that the exponential growth differential equation says that
dP/dt
P =k (4)

is constant. This rate is called the relative growth rate. Now, Table 16.1 gives the world
population at midyear for the years 1980 to 1989. Taking dt = 1 and dP ~ AP, we see
from the table that the relative growth rate in Equation (4) is approximately the constant
0.017. Thus, based on the tabled data with + = 0 representing 1980, = 1 representing
1981, and so forth, the world population could be modeled by the initial value problem,

CZTI: =0.017P,  P(0) = 4454.




P World population (1980-99)
6000 -
P = 44540017
5000

| |
40000 10 20 t
FIGURE 16.8 Notice that the value of the
solution P = 4454¢*%'" is 6152.16 when
t = 19, which is slightly higher than the
actual population in 1999.

Orthogonal trajectory

FIGURE 16.9 An orthogonal trajectory
intersects the family of curves at right
angles, or orthogonally.

FIGURE 16.10 Every straight line
through the origin is orthogonal to the
family of circles centered at the origin.

16.3 Applications 16-21

TABLE 16.1  World population (midyear)
Population
Year (millions) AP/P
1980 4454 76/4454 = 0.0171
1981 4530 80/4530 ~ 0.0177
1982 4610 80/4610 ~ 0.0174
1983 4690 80/4690 ~ 0.0171
1984 4770 81/4770 ~ 0.0170
1985 4851 82/4851 ~ 0.0169
1986 4933 85/4933 ~ 0.0172
1987 5018 87/5018 ~ 0.0173
1988 5105 85/5105 ~ 0.0167
1989 5190

Source: U.S. Bureau of the Census (Sept., 1999): www.census.gov/
ipc/ www/ worldpop.html.

The solution to this initial value problem gives the population function P = 4454¢%%'" In

year 1999 (so ¢ = 19), the solution predicts the world population in midyear to be about
6152 million, or 6.15 billion (Figure 16.8), which is more than the actual population of
6001 million from the U.S. Bureau of the Census. A more realistic model would consider
environmental factors affecting the growth rate.

Orthogonal Trajectories

An orthogonal trajectory of a family of curves is a curve that intersects each curve of the
family at right angles, or orthogonally (Figure 16.9). For instance, each straight line
through the origin is an orthogonal trajectory of the family of circles x> + y* = a2, cen-
tered at the origin (Figure 16.10). Such mutually orthogonal systems of curves are of par-
ticular importance in physical problems related to electrical potential, where the curves in
one family correspond to flow of electric current and those in the other family correspond

to curves of constant potential. They also occur in hydrodynamics and heat-flow problems.

EXAMPLE 2  Find the orthogonal trajectories of the family of curves xy = a, where
a # 0 is an arbitrary constant.

Solution The curves xy = «a form a family of hyperbolas with asymptotes y = +x. First
we find the slopes of each curve in this family, or their dy/dx values. Differentiating

xy = a implicitly gives

dy B dy vy
xa+y—0 or - X

Thus the slope of the tangent line at any point (x, y) on one of the hyperbolas xy = a is

!

»'" = —y/x. On an orthogonal trajectory the slope of the tangent line at this same point
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FIGURE 16.11 Each curve is orthogonal
to every curve it meets in the other family

must be the negative reciprocal, or x/y. Therefore, the orthogonal trajectories must satisfy
the differential equation

b _x
dc YV’

This differential equation is separable and we solve it as in Section 7.5:

ydy = xdx Separate variables.
/y dy = / x dx Integrate both sides.
Lo_ 1o
> 7% + C
y?—x?=b, (5)

where b = 2C is an arbitrary constant. The orthogonal trajectories are the family of hyper-

(Example 2).

EXERCISES 16.3

bolas given by Equation (5) and sketched in Figure 16.11. [

. Coasting bicycle A 66-kg cyclist on a 7-kg bicycle starts coast-
ing on level ground at 9 m/sec. The k in Equation (1) is about
3.9 kg/sec.

a. About how far will the cyclist coast before reaching a
complete stop?

b. How long will it take the cyclist’s speed to drop to 1 m/sec?

. Coasting battleship Suppose that an Iowa class battleship has
mass around 51,000 metric tons (51,000,000 kg) and a & value in
Equation (1) of about 59,000 kg/sec. Assume that the ship loses
power when it is moving at a speed of 9 m/sec.

a. About how far will the ship coast before it is dead in the
water?

b. About how long will it take the ship’s speed to drop to 1 m/sec?

. The data in Table 16.2 were collected with a motion detector and a
CBL™ by Valerie Sharritts, a mathematics teacher at St. Francis
DeSales High School in Columbus, Ohio. The table shows the dis-
tance s (meters) coasted on in-line skates in ¢ sec by her daughter
Ashley when she was 10 years old. Find a model for Ashley’s posi-
tion given by the data in Table 16.2 in the form of Equation (2).
Her initial velocity was vy = 2.75 m/sec, her mass m = 39.92 kg
(she weighed 88 1b), and her total coasting distance was 4.91 m.

. Coasting to a stop Table 16.3 shows the distance s (meters)
coasted on in-line skates in terms of time ¢ (seconds) by Kelly
Schmitzer. Find a model for her position in the form of Equation (2).

Her initial velocity was vy = 0.80 m/sec, her mass m = 49.90 kg
(110 1b), and her total coasting distance was 1.32 m.

TABLE 16.2 Ashley Sharritts skating data

t(sec) s (m) t (sec) s (m) t (sec) s (m)

0 0 2.24 3.05 4.48 4.77
0.16 0.31 2.40 3.22 4.64 4.82
0.32 0.57 2.56 3.38 4.80 4.84
0.48 0.80 2.72 3.52 4.96 4.86
0.64 1.05 2.88 3.67 5.12 4.88
0.80 1.28 3.04 3.82 5.28 4.89
0.96 1.50 3.20 3.96 5.44 4.90
1.12 1.72 3.36 4.08 5.60 4.90
1.28 1.93 3.52 4.18 5.76 491
1.44 2.09 3.68 431 5.92 4.90
1.60 2.30 3.84 441 6.08 491
1.76 2.53 4.00 4.52 6.24 4.90
1.92 2.73 4.16 4.63 6.40 491
2.08 2.89 4.32 4.69 6.56 491
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In Exercises 5-10, find the orthogonal trajectories of the family of
curves. Sketch several members of each family.

TABLE 16.3 Kelly Schmitzer skating data
t(sec) s (m) t (sec) s (m)
0 0 1.5 0.89
0.1 0.07 1.7 0.97
0.3 0.22 1.9 1.05
0.5 0.36 2.1 1.11
0.7 0.49 2.3 1.17
0.9 0.60 2.5 1.22
1.1 0.71 2.7 1.25
1.3 0.81 2.9 1.28

1 (sec) s (m) 5.y =mx 6. y = cx?
7 kx+ 2 =1 8. 2x? +yr=¢?
3.1 1.30 o x _ kx
9. y = ce 10. y=e
3.3 1.31 11. Show that the curves 2x* + 3y? = 5and y? = x? are orthogonal.
3.5 1.32 12. Find the family of solutions of the given differential equation and
3.7 1.32 the family of orthogonal trajectories. Sketch both families.
3.9 1.32 a. xdx +ydy =0 b. xdy — 2ydx =0
4.1 1.32 13. Suppose a and b are positive numbers. Sketch the parabolas
43 132 y2 _ 4[12 — dax and y2 — 4b2 + 4bx
4.5 1.32

in the same diagram. Show that they intersect at <a — b, :I:Z\/cz) ,

and that each “a-parabola” is orthogonal to every “b-parabola.”

Euler's Method

HisTORICAL BIOGRAPHY

Leonhard Euler
(1703-1783)

vy =Lx) = yo+ f(xp, yo)x — x¢)

y =y

Yo (xp» yo)

FIGURE 16.12 The linearization L(x) of
y = y(x)atx = xo.

FIGURE 16.13 The first Euler step
approximates y(x;) with y; = L(x).

If we do not require or cannot immediately find an exact solution for an initial value prob-
lem y' = f(x,y),y(x0) = yo, we can often use a computer to generate a table of approxi-
mate numerical values of y for values of x in an appropriate interval. Such a table is called
a numerical solution of the problem, and the method by which we generate the table is
called a numerical method. Numerical methods are generally fast and accurate, and they
are often the methods of choice when exact formulas are unnecessary, unavailable, or
overly complicated. In this section we study one such method, called Euler’s method, upon
which many other numerical methods are based.

Euler's Method

Given a differential equation dy/dx = f(x, y) and an initial condition y(x¢) = yy, we can
approximate the solution y = y(x) by its linearization

L(x) = y(xo) + y"(x0)(x — xo) or  L(x) =y + f(xo0,y0)(x — xp).

The function L(x) gives a good approximation to the solution y(x) in a short interval about
xo (Figure 16.12). The basis of Euler’s method is to patch together a string of linearizations
to approximate the curve over a longer stretch. Here is how the method works.

We know the point (xg, yo) lies on the solution curve. Suppose that we specify a new
value for the independent variable to be x; = x¢ + dx. (Recall that dx = Ax in the defini-
tion of differentials.) If the increment dx is small, then

yi = L(x1) = yo + f(x0,y0) dx

is a good approximation to the exact solution value y = y(x;). So from the point (xo, yo),
which lies exactly on the solution curve, we have obtained the point (xj, y;), which lies
very close to the point (x1, y(x;)) on the solution curve (Figure 16.13).

Using the point (xy, y;) and the slope f(xi, y1) of the solution curve through (xy, y1),
we take a second step. Setting x, = x; + dx, we use the linearization of the solution curve
through (xy, y1) to calculate

y2 =y + fle, ) dx.
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y

Trl‘le solutioﬂ curve
y=y® |

[
[
[
| dx | dx |
0 X0 X1 X2

FIGURE 16.14 Three steps in the Euler
approximation to the solution of the initial
value problem y' = f(x, ), y(xo) = yo.
As we take more steps, the errors involved
usually accumulate, but not in the
exaggerated way shown here.

This gives the next approximation (x;, y,) to values along the solution curve y = y(x)
(Figure 16.14). Continuing in this fashion, we take a third step from the point (x,, y,) with
slope f(x3, y2) to obtain the third approximation

y3 =y + flx,»2) dx,

and so on. We are literally building an approximation to one of the solutions by following
the direction of the slope field of the differential equation.

The steps in Figure 16.14 are drawn large to illustrate the construction process, so the
approximation looks crude. In practice, dx would be small enough to make the red curve
hug the blue one and give a good approximation throughout.

EXAMPLE 1  Find the first three approximations yy, y», y3 using Euler’s method for the
initial value problem

yo=14y 0 =1,
starting at xo = 0 with dx = 0.L.
Solution We have xo =0, yo =1, x; =x9 + dv = 0.1, x, =x¢p + 2dx = 0.2, and
x3 = x9 + 3dx = 0.3.
First:  y1 = yo + f(xo0,y0) dx
= yo + (1 + yo) dx
=1+ (1 +1)01)=12
Second:  yy =y + f(x1,y1) dx
=y + (1 +y)dx
=12+ (1 + 1.2)(0.1) = 142
Third:  y3 = y» + f(x2,y2) dx
=y + (1 +y)dx
=142 + (1 + 1.42)(0.1) = 1.662 ]

The step-by-step process used in Example 1 can be continued easily. Using equally
spaced values for the independent variable in the table and generating » of them, set

x| = xo + dx

X = x1 + dx

Xy = Xp—1 + dx.
Then calculate the approximations to the solution,

1 =yo + f(xo,y0) dx
y2 =y + flx,y) dx

Yn = Yn-1 t fOn—1,yn-1) dx.

The number of steps n can be as large as we like, but errors can accumulate if 7 is too
large.



FIGURE 16.15 The graphof y = 2¢* — 1
superimposed on a scatterplot of the Euler
approximations shown in Table 16.4
(Example 2).
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Euler’s method is easy to implement on a computer or calculator. A computer program
generates a table of numerical solutions to an initial value problem, allowing us to input x
and yy, the number of steps n, and the step size dx. It then calculates the approximate solu-
tion values yi, y2, . . ., ¥, in iterative fashion, as just described.

Solving the separable equation in Example 1, we find that the exact solution to the
initial value problem is y = 2¢* — 1. We use this information in Example 2.

EXAMPLE 2 Use Euler’s method to solve

y=1+y  y0)=1,

on the interval 0 = x = 1, starting at xo = 0 and taking (a) dx = 0.1 and (b) dx = 0.05.
Compare the approximations with the values of the exact solution y = 2¢* — 1.

Solution

(a) We used a computer to generate the approximate values in Table 16.4. The “error”
column is obtained by subtracting the unrounded Euler values from the unrounded
values found using the exact solution. All entries are then rounded to four decimal
places.

TABLE 16.4 Euler solutionof y' = 1 + y, y(0) = 1,
step size dx = 0.1

X y (Euler) y (exact) Error
0 1 1 0

0.1 1.2 1.2103 0.0103
0.2 1.42 1.4428 0.0228
0.3 1.662 1.6997 0.0377
0.4 1.9282 1.9836 0.0554
0.5 2.2210 2.2974 0.0764
0.6 2.5431 2.6442 0.1011
0.7 2.8974 3.0275 0.1301
0.8 3.2872 3.4511 0.1639
0.9 3.7159 3.9192 0.2033
1.0 4.1875 4.4366 0.2491

By the time we reach x = 1 (after 10 steps), the error is about 5.6% of the exact
solution. A plot of the exact solution curve with the scatterplot of Euler solution
points from Table 16.4 is shown in Figure 16.15.

(b) One way to try to reduce the error is to decrease the step size. Table 16.5 shows the re-
sults and their comparisons with the exact solutions when we decrease the step size to
0.05, doubling the number of steps to 20. As in Table 16.4, all computations are per-
formed before rounding. This time when we reach x = 1, the relative error is only
about 2.9%.
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TABLE 16.5 Euler solutionof y' = 1 + y, y(0) = 1,
step size dx = 0.05

X y (Euler) y (exact) Error
0 1 1 0
0.05 1.1 1.1025 0.0025
0.10 1.205 1.2103 0.0053
0.15 1.3153 1.3237 0.0084
0.20 1.4310 1.4428 0.0118
0.25 1.5526 1.5681 0.0155
0.30 1.6802 1.6997 0.0195
0.35 1.8142 1.8381 0.0239
0.40 1.9549 1.9836 0.0287
0.45 2.1027 2.1366 0.0340
0.50 2.2578 2.2974 0.0397
0.55 2.4207 2.4665 0.0458
0.60 2.5917 2.6442 0.0525
0.65 2.7713 2.8311 0.0598
0.70 2.9599 3.0275 0.0676
0.75 3.1579 3.2340 0.0761
0.80 3.3657 3.4511 0.0853
0.85 3.5840 3.6793 0.0953
0.90 3.8132 3.9192 0.1060
0.95 4.0539 4.1714 0.1175
1.00 4.3066 4.4366 0.1300

]

It might be tempting to reduce the step size even further in Example 2 to obtain
greater accuracy. Each additional calculation, however, not only requires additional com-
puter time but more importantly adds to the buildup of round-off errors due to the approx-
imate representations of numbers inside the computer.

The analysis of error and the investigation of methods to reduce it when making nu-
merical calculations are important but are appropriate for a more advanced course. There
are numerical methods more accurate than Euler’s method, as you can see in a further
study of differential equations. We study one improvement here.

Improved Euler’s Method

We can improve on Euler’s method by taking an average of two slopes. We first estimate y,
as in the original Euler method, but denote it by z,,. We then take the average of f(x,—1, y,—1)
and f(x,, z,) in place of f(x,—1, y,—1) in the next step. Thus, we calculate the next approxi-
mation y, using

Zn = Yn—1 + f(xnflsynfl) dx

xl’l*; n— + xnazn
—— -1, 1; f( )dx.
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EXAMPLE 3  Use the improved Euler’s method to solve

y=1+y  »0) =1,

on the interval 0 = x = 1, starting at xo = 0 and taking dx = 0.1. Compare the approxi-
mations with the values of the exact solution y = 2e* — 1.

Solution We used a computer to generate the approximate values in Table 16.6. The “error”
column is obtained by subtracting the unrounded improved Euler values from the unrounded
values found using the exact solution. All entries are then rounded to four decimal places.

TABLE 16.6 Improved Euler solution of y' = 1 + y,
y(0) = 1, step size dx = 0.1
y (improved

X Euler) y (exact) Error
0 1 1 0

0.1 1.21 1.2103 0.0003
0.2 1.4421 1.4428 0.0008
0.3 1.6985 1.6997 0.0013
0.4 1.9818 1.9836 0.0018
0.5 2.2949 2.2974 0.0025
0.6 2.6409 2.6442 0.0034
0.7 3.0231 3.0275 0.0044
0.8 3.4456 3.4511 0.0055
0.9 3.9124 3.9192 0.0068
1.0 4.4282 4.4366 0.0084

By the time we reach x = 1 (after 10 steps), the relative error is about 0.19%. [

By comparing Tables 16.4 and 16.6, we see that the improved Euler’s method is con-
siderably more accurate than the regular Euler’s method, at least for the initial value prob-
lem ' =1+ y, y(0) = L

In Exercises 1-6, use Euler’s method to calculate the first three ap-
proximations to the given initial value problem for the specified incre-
ment size. Calculate the exact solution and investigate the accuracy of
your approximations. Round your results to four decimal places.

Ly =1-% 2 =-1, dc=05

X

2.y =x(1—-y), y(1)=0, dcx=02

N SN AW

Y =2y +2, y(0)=3, dc=02

V' =21 +2x), y(—1)=1, dx=05
v =2xe", y(0)=2, dx=0.1
y=y+et =2, y0)=2, dx=05

. Use the Euler method with dx = 0.2 to estimate y(1) if y' =y

and y(0) = 1. What is the exact value of y(1)?
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8. Use the Euler method with dx = 0.2 to estimate y(2) if y' = y/x
and y(1) = 2. What is the exact value of y(2)?
9. Use the Euler method with dx = 0.5 to estimate y(5) if
V= yz/\/); and y(1) = —1. What is the exact value of y(5)?
10. Use the Euler method with dx = 1/3 to estimate y(2) if
y' =y — e¥and y(0) = 1. What is the exact value of y(2)?

In Exercises 11 and 12, use the improved Euler’s method to calculate
the first three approximations to the given initial value problem. Com-
pare the approximations with the values of the exact solution.
11. y =2p(x + 1), y(0) =3, dx =02

(See Exercise 3 for the exact solution.)
12. y = x(1 —y), »(1) =0, dx =02

(See Exercise 2 for the exact solution.)

COMPUTER EXPLORATIONS

In Exercises 13—16, use Euler’s method with the specified step size to
estimate the value of the solution at the given point x”. Find the value
of the exact solution at x".

13y = 2xe*, p(0)=2, dx=01 x =1

4. y =y +e* =2, p0)=2, dx=05 x"=2

5

15 ' = Vafy, y>0, p0) =1, dcr=01, x =1

16. v =1+y% »0)=0, dr=01 x"=1

In Exercises 17 and 18, (a) find the exact solution of the initial value
problem. Then compare the accuracy of the approximation with y(x”)
using Euler’s method starting at x, with step size (b) 0.2, (¢) 0.1, and
(d) 0.05.

17. v =2*(x — 1), y(2)=—-1/2, =2, x =3

18. yy =y —1, »0)=3, x=0, x =1

In Exercises 19 and 20, compare the accuracy of the approximation
with y(x") using the improved Euler’s method starting at x, with step size

a. 0.2 b. 0.1 c. 0.05

d. Describe what happens to the error as the step size decreases.

16.5

5

19. ) =% x— 1), »2)=-1/2, xg=2, x =3
(See Exercise 17 for the exact solution.)

5

20. Y =y—1, y(0)=3, x=0, x =1
(See Exercise 18 for the exact solution.)

Use a CAS to explore graphically each of the differential equations in
Exercises 21-24. Perform the following steps to help with your explo-
rations.

a. Plot a slope field for the differential equation in the given
xy-window.

b. Find the general solution of the differential equation using
your CAS DE solver.

c. Graph the solutions for the values of the arbitrary constant
C = -2,-1,0, 1, 2 superimposed on your slope field plot.

d. Find and graph the solution that satisfies the specified initial
condition over the interval [0, b].

e. Find the Euler numerical approximation to the solution of the
initial value problem with 4 subintervals of the x-interval and
plot the Euler approximation superimposed on the graph
produced in part (d).

f. Repeat part (e) for 8, 16, and 32 subintervals. Plot these three
Euler approximations superimposed on the graph from part (e).

g. Find the error (y(exact) — y(Euler)) at the specified point
x = b for each of your four Euler approximations. Discuss
the improvement in the percentage error.
21. Y =x+y, p0)=-7/10; —4=x=4 —-4=y=4
b=1
22. y' = —xfy, »(0)=2; -3=x=3, -3=y=3 b=2
23. A logistic equation )’ = y(2 —y), »(0) = 1/2;
0=x=40=y=3;, b=3
24. y' = (sinx)(siny), »(0) =2, —-6=x=6, —6=y=6
b =3m/2

Graphical Solutions of Autonomous Equations

In Chapter 4 we learned that the sign of the first derivative tells where the graph of a func-
tion is increasing and where it is decreasing. The sign of the second derivative tells the
concavity of the graph. We can build on our knowledge of how derivatives determine the
shape of a graph to solve differential equations graphically. The starting ideas for doing so
are the notions of phase line and equilibrium value. We arrive at these notions by investi-
gating what happens when the derivative of a differentiable function is zero from a point of
view different from that studied in Chapter 4.
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Equilibrium Values and Phase Lines

When we differentiate implicitly the equation
1 _
gln(Sy —15) =x + 1,

we obtain

(5 \&_,
S\S5y — 15/ dx '
Solving for y' = dy/dx we find y' = 5y — 15 = 5(y — 3). In this case the derivative )’
is a function of y only (the dependent variable) and is zero when y = 3.
A differential equation for which dy/dx is a function of y only is called an

autonomous differential equation. Let’s investigate what happens when the derivative in
an autonomous equation equals zero. We assume any derivatives are continuous.

DEFINITION  Ifdy/dx = g(y) is an autonomous differential equation, then the
values of y for which dy/dx = 0 are called equilibrium values or rest points.

Thus, equilibrium values are those at which no change occurs in the dependent vari-
able, so y is at rest. The emphasis is on the value of y where dy/dx = 0, not the value of x,
as we studied in Chapter 4. For example, the equilibrium values for the autonomous differ-
ential equation

d
d%=(y+l)(y—2)

arey = —land y = 2.

To construct a graphical solution to an autonomous differential equation, we first
make a phase line for the equation, a plot on the y-axis that shows the equation’s equilib-
rium values along with the intervals where dy/dx and d?y/dx?* are positive and negative.
Then we know where the solutions are increasing and decreasing, and the concavity of the
solution curves. These are the essential features we found in Section 4.4, so we can deter-
mine the shapes of the solution curves without having to find formulas for them.

EXAMPLE 1  Draw a phase line for the equation

d
=+ -2)

and use it to sketch solutions to the equation.

Solution
1. Draw a number line for y and mark the equilibrium values y = —1 and y = 2, where
dy/dx = 0.
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FIGURE 16.16 Graphical solutions fro
Example 1 include the horizontal lines
y = —land y = 2 through the
equilibrium values. From Theorem 1, no
two solution curves will ever cross or
touch each other.

2.

Identify and label the intervals where y' > 0 and y' < 0. This step resembles what
we did in Section 4.3, only now we are marking the y-axis instead of the x-axis.

[ [
[ [
[ [

y'>0 ! y'<0 ! y'>0
é é

—1 2

We can encapsulate the information about the sign of y’ on the phase line itself.
Since y' > 0 on the interval to the left of y = —1, a solution of the differential equa-
tion with a y-value less than —1 will increase from there toward y = —1. We display
this information by drawing an arrow on the interval pointing to —1.

= > O < - 0 —o >—> Y
-1 2
Similarly, y* < 0 between y = —1 and y = 2, so any solution with a value in
this interval will decrease toward y = —1.

For y > 2, we have y' > 0, so a solution with a y-value greater than 2 will in-
crease from there without bound.

In short, solution curves below the horizontal line y = —1 in the xy-plane rise
toward y = —1. Solution curves between the lines y = —1 and y = 2 fall away from
y = 2 toward y = —1. Solution curves above y = 2 rise away from y = 2 and keep
going up.

Calculate y" and mark the intervals where y" > 0 and y" < 0.To find y", we differ-
entiate y' with respect to x, using implicit differentiation.

y, = (y + 1)()/ - 2) = y2 —y—2 Formula for y' . ..

//_i /:i 2 _ —
y—dx(y) dx(y y—2)

- o , Differentiated implicitly
=Y Y with respect to x.

=2y - 1)
=2y - Dy + Dy —2).

From this formula, we see that y” changes signat y = —1,y = 1/2,and y = 2. We
add the sign information to the phase line.

y>0 y' <0 I y'<0 I y'>0
y'<0 } y'>0 } y'<0 } y'>0
= — — — ‘ — y
—1 1 2
2

Sketch an assortment of solution curves in the xy-plane. The horizontal lines
y = —1,y=1/2, and y = 2 partition the plane into horizontal bands in which we
know the signs of " and y” . In each band, this information tells us whether the solu-
tion curves rise or fall and how they bend as x increases (Figure 16.16).

The “equilibrium lines” y = —1 and y = 2 are also solution curves. (The con-
stant functions y = —1 and y = 2 satisfy the differential equation.) Solution curves



FIGURE 16.17 First step in constructing
the phase line for Newton’s law of cooling
in Example 2. The temperature tends
towards the equilibrium (surrounding-
medium) value in the long run.
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that cross the line y = 1/2 have an inflection point there. The concavity changes from
concave down (above the line) to concave up (below the line).

As predicted in Step 2, solutions in the middle and lower bands approach the
equilibrium value y = —1 as x increases. Solutions in the upper band rise steadily
away from the valuey = 2. [

Stable and Unstable Equilibria

Look at Figure 16.16 once more, in particular at the behavior of the solution curves near the
equilibrium values. Once a solution curve has a value near y = —1, it tends steadily toward
that value; y = —1 is a stable equilibrium. The behavior near y = 2 is just the opposite:
all solutions except the equilibrium solution y = 2 itself move away from it as x increases.
We call y = 2 an unstable equilibrium. If the solution is af that value, it stays, but if it is
off by any amount, no matter how small, it moves away. (Sometimes an equilibrium value is
unstable because a solution moves away from it only on one side of the point.)

Now that we know what to look for, we can already see this behavior on the initial
phase line. The arrows lead away from y = 2 and, once to the left of y = 2, toward
y=—1.

We now present several applied examples for which we can sketch a family of solu-
tion curves to the differential equation models using the method in Example 1.

In Section 7.5 we solved analytically the differential equation

A1 _ _WH-Hy), k>0
dt

modeling Newton’s law of cooling. Here H is the temperature (amount of heat) of an ob-
ject at time ¢ and Hy is the constant temperature of the surrounding medium. Our first ex-
ample uses a phase line analysis to understand the graphical behavior of this temperature
model over time.

EXAMPLE 2  What happens to the temperature of the soup when a cup of hot soup is
placed on a table in a room? We know the soup cools down, but what does a typical tem-
perature curve look like as a function of time?

Solution Suppose that the surrounding medium has a constant Celsius temperature of
15°C. We can then express the difference in temperature as H(z) — 15. Assuming H is a
differentiable function of time ¢, by Newton’s law of cooling, there is a constant of propor-
tionality £ > 0 such that

dH

= —k(H = 15) (1)
(minus k to give a negative derivative when H > 15).

Since dH/dt = 0 at H = 15, the temperature 15°C is an equilibrium value. If

H > 15, Equation (1) tells us that (H — 15) > 0 and dH/dt < 0. If the object is hotter
than the room, it will get cooler. Similarly, if H < 15, then (H — 15) < 0 and
dH/dt > 0. An object cooler than the room will warm up. Thus, the behavior described by
Equation (1) agrees with our intuition of how temperature should behave. These observa-
tions are captured in the initial phase line diagram in Figure 16.17. The value H = 15is a
stable equilibrium.
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FIGURE 16.18 The complete phase line
for Newton’s law of cooling (Example 2).
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temperature

Temperature
of surrounding
medium

¢ Initial
temperature

t

FIGURE 16.19 Temperature versus time.
Regardless of initial temperature, the
object’s temperature /() tends toward
15°C, the temperature of the surrounding
medium.

FIGURE 16.20 An object falling under the
influence of gravity with a resistive force
assumed to be proportional to the velocity.

We determine the concavity of the solution curves by differentiating both sides of
Equation (1) with respect to #:

d(dH\ _d, .,
dt(dl‘)_dt( k(H = 15))
d’H _ _, dH
dr? dt’

Since —k is negative, we see that d>H/dt? is positive when dH/dt < 0 and negative when
dH/dt > 0. Figure 16.18 adds this information to the phase line.

The completed phase line shows that if the temperature of the object is above the
equilibrium value of 15°C, the graph of H(f) will be decreasing and concave upward. If the
temperature is below 15°C (the temperature of the surrounding medium), the graph of H(#)
will be increasing and concave downward. We use this information to sketch typical solu-
tion curves (Figure 16.19).

From the upper solution curve in Figure 16.19, we see that as the object cools down,
the rate at which it cools slows down because dH/dt approaches zero. This observation is
implicit in Newton’s law of cooling and contained in the differential equation, but the
flattening of the graph as time advances gives an immediate visual representation of the
phenomenon. The ability to discern physical behavior from graphs is a powerful tool in
understanding real-world systems. [

EXAMPLE 3  Galileo and Newton both observed that the rate of change in momentum
encountered by a moving object is equal to the net force applied to it. In mathematical
terms,

F = % (mv) (2)

where F is the force and m and v the object’s mass and velocity. If m varies with time, as it
will if the object is a rocket burning fuel, the right-hand side of Equation (2) expands to

m dv +tuv dm
dt dt
using the Product Rule. In many situations, however, m is constant, dm/dt = 0, and Equa-

tion (2) takes the simpler form

_ o dv _
F= m or F = ma, (3)
known as Newton s second law of motion (see Section 16.3).
In free fall, the constant acceleration due to gravity is denoted by g and the one force
acting downward on the falling body is

F, = mg,

the propulsion due to gravity. If, however, we think of a real body falling through the air—
say, a penny from a great height or a parachutist from an even greater height—we know
that at some point air resistance is a factor in the speed of the fall. A more realistic model
of free fall would include air resistance, shown as a force F, in the schematic diagram in
Figure 16.20.
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FIGURE 16.21 Initial phase line for
Example 3.
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FIGURE 16.22 The completed phase line
for Example 3.
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FIGURE 16.23 Typical velocity curves in
Example 3. The value v = mg/k is the
terminal velocity.
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For low speeds well below the speed of sound, physical experiments have shown that
F, is approximately proportional to the body’s velocity. The net force on the falling body is
therefore

F=F,—F,
giving
dv _
mo; = mg kv
dv _ _k
dt =8 mv' (4)

We can use a phase line to analyze the velocity functions that solve this differential equation.
The equilibrium point, obtained by setting the right-hand side of Equation (4) equal to
Zero, 1S

mg
-

v =

If the body is initially moving faster than this, dv/dt is negative and the body slows down.
If the body is moving at a velocity below mg/k, then dv/dt > 0 and the body speeds up.
These observations are captured in the initial phase line diagram in Figure 16.21.

We determine the concavity of the solution curves by differentiating both sides of
Equation (4) with respect to :

Pv_d(, k\_ _kdv
g dt\& m m gy

We see that d*v/dt* < 0 whenv < mg/k and d*v/dt* > 0 whenv > mg/k. Figure 16.22
adds this information to the phase line. Notice the similarity to the phase line for Newton’s
law of cooling (Figure 16.18). The solution curves are similar as well (Figure 16.23).

Figure 16.23 shows two typical solution curves. Regardless of the initial velocity, we
see the body’s velocity tending toward the limiting value v = mg/k. This value, a stable
equilibrium point, is called the body’s terminal velocity. Skydivers can vary their terminal
velocity from 95 mph to 180 mph by changing the amount of body area opposing the fall.

]

EXAMPLE 4  In Section 16.3 we examined population growth using the model of expo-
nential change. That is, if P represents the number of individuals and we neglect depar-
tures and arrivals, then

dP
7 kP, (5)
where k& > 0 is the birthrate minus the death rate per individual per unit time.

Because the natural environment has only a limited number of resources to sustain
life, it is reasonable to assume that only a maximum population M can be accommodated.
As the population approaches this limiting population or carrying capacity, resources
become less abundant and the growth rate & decreases. A simple relationship exhibiting
this behavior is

k=rM—P),
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FIGURE 16.24 The initial phase line for
Equation 6.
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FIGURE 16.25 The completed phase line
for logistic growth (Equation 6).
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where 7 > 0 is a constant. Notice that k decreases as P increases toward M and that & is
negative if P is greater than M. Substituting r(M — P) for k in Equation (5) gives the dif-
ferential equation

‘fl—f =M — P)P = rMP — rP*. (6)
The model given by Equation (6) is referred to as logistic growth.

We can forecast the behavior of the population over time by analyzing the phase line
for Equation (6). The equilibrium values are P = M and P = 0, and we can see that
dP/dt > 0if 0 < P < M and dP/dt < 0 if P > M. These observations are recorded on
the phase line in Figure 16.24.

We determine the concavity of the population curves by differentiating both sides of
Equation (6) with respect to :

&P _d R
il di (rMP — rP?)
_ 9P _, ,dP
=rM dr 2rP 7
dP
=r(M — 2P)E. (7)

If P = M/2, then d*P/dt*> = 0.1f P < M/2, then (M — 2P) and dP)/dt are positive and
d*P/dt* > 0. If M/2 < P < M, then (M — 2P) < 0, dP/dt > 0, and d*P/dt* < 0. If
P > M, then (M — 2P) and dP/dt are both negative and d’P/dt> > 0. We add this infor-
mation to the phase line (Figure 16.25).

The lines P = M/2 and P = M divide the first quadrant of the #P-plane into hori-
zontal bands in which we know the signs of both dP/dt and d*P/dt*. In each band, we
know how the solution curves rise and fall, and how they bend as time passes. The
equilibrium lines P = 0 and P = M are both population curves. Population curves
crossing the line P = M/2 have an inflection point there, giving them a sigmoid shape
(curved in two directions like a letter S). Figure 16.26 displays typical population
curves. ]
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FIGURE 16.26 Population curves in Example 4.
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EXERCISES 16.5

16-35

16.5 Graphical Solutions of Autonomous Equations

In Exercises 1-8,

5.0 =Vy, y>0 6.y =y—

7.0 =(-Dy-2)(y—3) 8y =y -y

a. Identify the equilibrium values. Which are stable and which
are unstable?

b. Construct a phase line. Identify the signs of " and »".

c. Sketch several solution curves.

dy dy
.dxf(y+2)(y—3) Z.dxfy—4
dy ; dy )
VY 4'dx_y_2y

The autonomous differential equations in Exercises 9-12 represent mod-

els

for population growth. For each exercise, use a phase line analysis to

sketch solution curves for P(7), selecting different starting values P(0) (as
in Example 4). Which equilibria are stable, and which are unstable?

9.

11.

13.

14.

P _ . dP _ B

g 1 —2pP 10. - P(1 — 2P)

dP _ _ dP _ _ 1
g 2P(P — 3) 12. 7 3P(1 P)(P 2)
Catastrophic continuation of Example 4 Suppose that a healthy

population of some species is growing in a limited environment
and that the current population Py is fairly close to the carrying
capacity M. You might imagine a population of fish living in a
freshwater lake in a wilderness area. Suddenly a catastrophe such
as the Mount St. Helens volcanic eruption contaminates the lake
and destroys a significant part of the food and oxygen on which
the fish depend. The result is a new environment with a carrying
capacity M, considerably less than M, and, in fact, less than the
current population Py. Starting at some time before the catastro-
phe, sketch a “before-and-after” curve that shows how the fish
population responds to the change in environment.

Controlling a population The fish and game department in a
certain state is planning to issue hunting permits to control the
deer population (one deer per permit). It is known that if the deer
population falls below a certain level m, the deer will become ex-
tinct. It is also known that if the deer population rises above the
carrying capacity M, the population will decrease back to M
through disease and malnutrition.

a. Discuss the reasonableness of the following model for the
growth rate of the deer population as a function of time:
4P _ pv - PP — m),
dt
where P is the population of the deer and r is a positive
constant of proportionality. Include a phase line.

15.

16.

17.

18.

b. Explain how this model differs from the logistic model
dP/dt = rP(M — P). Is it better or worse than the logistic
model?

¢. Show that if P > M for all ¢, then lim;—cc P(¢) = M.
d. What happens if P < m for all ¢?

e. Discuss the solutions to the differential equation. What are the
equilibrium points of the model? Explain the dependence of
the steady-state value of P on the initial values of P. About
how many permits should be issued?

Skydiving If a body of mass m falling from rest under the ac-
tion of gravity encounters an air resistance proportional to the
square of velocity, then the body’s velocity ¢ seconds into the fall
satisfies the equation

mdl:mg—kvz, k>0

dt
where k is a constant that depends on the body’s aerodynamic
properties and the density of the air. (We assume that the fall is
too short to be affected by changes in the air’s density.)

a. Draw a phase line for the equation.
b. Sketch a typical velocity curve.

¢. For a 160-Ib skydiver (mg = 160) and with time in seconds
and distance in feet, a typical value of & is 0.005. What is the
diver’s terminal velocity?

Resistance proportional to Vv A body of mass m is projected
vertically downward with initial velocity vo. Assume that the re-
sisting force is proportional to the square root of the velocity and
find the terminal velocity from a graphical analysis.

Sailing A sailboat is running along a straight course with the
wind providing a constant forward force of 50 1b. The only other
force acting on the boat is resistance as the boat moves through
the water. The resisting force is numerically equal to five times
the boat’s speed, and the initial velocity is 1 ft/sec. What is the
maximum velocity in feet per second of the boat under this wind?

The spread of information Sociologists recognize a phenomenon
called social diffusion, which is the spreading of a piece of informa-
tion, technological innovation, or cultural fad among a population.
The members of the population can be divided into two classes:
those who have the information and those who do not. In a fixed
population whose size is known, it is reasonable to assume that the
rate of diffusion is proportional to the number who have the infor-
mation times the number yet to receive it. If X denotes the number of
individuals who have the information in a population of N people,

then a mathematical model for social diffusion is given by
dX _ _
d kX(N - X),

where ? represents time in days and £ is a positive constant.
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Discuss the reasonableness of the model. Use a phase line analysis to sketch the solution curve as-
suming that the switch in the RL-circuit is closed at time r = 0.
What happens to the current as z—> 00 ? This value is called the
steady-state solution.

Construct a phase line identifying the signs of X" and X".

. Sketch representative solution curves.

g e T

Predict the value of X for which the information is spreading

. . 20. A 1 in sh S that | is sinking in a thick
most rapidly. How many people eventually receive the peart il SAampoo  Suppose fat a pear’ IS sinking 1n a thie

fluid, like shampoo, subject to a frictional force opposing its fall

information? and proportional to its velocity. Suppose that there is also a resis-
19. Current in an RL-circuit The accompanying diagram repre- tive buoyant force exerted by the shampoo. According to
sents an electrical circuit whose total resistance is a constant R Archimedes’ principle, the buoyant force equals the weight of the
ohms and whose self-inductance, shown as a coil, is L henries, fluid displaced by the pearl. Using m for the mass of the pearl and
also a constant. There is a switch whose terminals at ¢ and b can P for the mass of the shampoo displaced by the pearl as it de-

be closed to connect a constant electrical source of V' volts. From scends, complete the following steps.

Section 16.2, we have a. Draw a schematic diagram showing the forces acting on the

. di CRi— T pearl as it sinks, as in Figure 16.20.

I, l = b . . . . .
dt b. Using v(¢) for the pearl’s velocity as a function of time ¢, write
where i is the intensity of the current in amperes and ¢ is the time ?a(lilliifegrgzgil equation modeling the velocity of the pearl as a

in seconds.
c. Construct a phase line displaying the signs of v’ and v".

d. Sketch typical solution curves.

e. What is the terminal velocity of the pearl?

16.6 Systems of Equations and Phase Planes

In some situations we are led to consider not one, but several first-order differential equa-
tions. Such a collection is called a system of differential equations. In this section we pre-
sent an approach to understanding systems through a graphical procedure known as a
phase-plane analysis. We present this analysis in the context of modeling the populations
of trout and bass living in a common pond.

Phase Planes

A general system of two first-order differential equations may take the form

dx

o = ),
dy
i G(x, y).

Such a system of equations is called autonomous because dx/dt and dy/dt do not depend
on the independent variable time #, but only on the dependent variables x and y. A solution
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of such a system consists of a pair of functions x(#) and y(¢) that satisfies both of the dif-
ferential equations simultaneously for every ¢ over some time interval (finite or infinite).

We cannot look at just one of these equations in isolation to find solutions x(¢) or y(#)
since each derivative depends on both x and y. To gain insight into the solutions, we look at
both dependent variables together by plotting the points (x(?), y(¢)) in the xy-plane starting
at some specified point. Therefore the solution functions are considered as parametric
equations (with parameter ¢), and a corresponding solution curve through the specified
point is called a trajectory of the system. The xy-plane itself, in which these trajectories
reside, is referred to as the phase plane. Thus we consider both solutions together and
study the behavior of all the solution trajectories in the phase plane. It can be proved that
two trajectories can never cross or touch each other.

A Competitive-Hunter Model

Imagine two species of fish, say trout and bass, competing for the same limited resources
in a certain pond. We let x(#) represent the number of trout and y(f) the number of bass liv-
ing in the pond at time ¢. In reality x(¢) and y(f) are always integer valued, but we will ap-
proximate them with real-valued differentiable functions. This allows us to apply the
methods of differential equations.

Several factors affect the rates of change of these populations. As time passes, each
species breeds, so we assume its population increases proportionally to its size. Taken by it-
self, this would lead to exponential growth in each of the two populations. However, there is
a countervailing effect from the fact that the two species are in competition. A large number
of bass tends to cause a decrease in the number of trout, and vice-versa. Our model takes
the size of this effect to be proportional to the frequency with which the two species inter-
act, which in turn is proportional to xy, the product of the two populations. These consider-
ations lead to the following model for the growth of the trout and bass in the pond:

dx

- (a — by)x, (1a)
d
jJ; = (m — nx)y. (1b)

Here x(7) represents the trout population, y(7) the bass population, and a, b, m, n are positive
constants. A solution of this system then consists of a pair of functions x(¢) and y(7) that
gives the population of each fish species at time . Each equation in (1) contains both of the
unknown functions x and y, so we are unable to solve them individually. Instead, we will use
a graphical analysis to study the solution trajectories of this competitive-hunter model.

We now examine the nature of the phase plane in the trout-bass population model. We
will be interested in the 1st quadrant of the xy-plane, where x = 0 and y = 0, since popu-
lations cannot be negative. First, we determine where the bass and trout populations are
both constant. Noting that the (x(¢), y(¢)) values remain unchanged when dx/dt = 0 and
dy/dt = 0, Equations (1a and 1b) then become

(a—byx =0,

(m — nx)y = 0.
This pair of simultaneous equations has two solutions: (x,y) = (0,0) and (x,y) =
(m/n, a/b). At these (x, y) values, called equilibrium or rest points, the two populations
remain at constant values over all time. The point (0, 0) represents a pond containing no

members of either fish species; the point (m/n, a/b) corresponds to a pond with an un-
changing number of each fish species.
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y Bass

X
m Trout
n

FIGURE 16.28 To the left
of the line x = m/n the
trajectories move upward, and

to the right they move
downward.
y Bass
a <
b >
Trout

FIGURE 16.29 Above the
line y = a/b the trajectories
move to the left, and below it
they move to the right.
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FIGURE 16.30 Composite graphical
analysis of the trajectory directions in the
four regions determined by x = m/n and

y = a/b.

Next, we note that if y = a/b, then Equation (1a) implies dx/dt = 0, so the trout pop-
ulation x(7) is constant. Similarly, if x = m/n, then Equation (1b) implies dy/dt = 0, and
the bass population y(#) is constant. This information is recorded in Figure 16.27.

y Bass Yy Bass Yy Bass

0

S

S
3
I
S

Trout

\ _ al (T} ,,,,,,

= =z

(a)

FIGURE 16.27 Rest points in the competitive-hunter model given by Equations (1a and 1b).

In setting up our competitive-hunter model, precise values of the constants a, b, m, n
will not generally be known. Nonetheless, we can analyze the system of Equations (1) to
learn the nature of its solution trajectories. We begin by determining the signs of dx/dt and
dy/dt throughout the phase plane. Although x(¢) represents the number of trout and y(¢) the
number of bass at time 7, we are thinking of the pair of values (x(#), y(¢)) as a point tracing
out a trajectory curve in the phase plane. When dx/dt is positive, x(¢) is increasing and the
point is moving to the right in the phase plane. If dx/dt is negative, the point is moving to
the left. Likewise, the point is moving upward where dy/dt is positive and downward where
dy/dt is negative.

We saw that dy/dt = 0 along the vertical line x = m/n. To the left of this line, dy/d!t
is positive since dy/dt = (m — nx)y and x < m/n. So the trajectories on this side of the
line are directed upward. To the right of this line, dy/dt is negative and the trajectories
point downward. The directions of the associated trajectories are indicated in Figure 16.28.
Similarly, above the horizontal line y = a/b, we have dx/dt < 0 and the trajectories head
leftward; below this line they head rightward, as shown in Figure 16.29. Combining this
information gives four distinct regions in the plane 4, B, C, D, with their respective trajec-
tory directions shown in Figure 16.30.

Next, we examine what happens near the two equilibrium points. The trajectories near
(0, 0) point away from it, upward and to the right. The behavior near the equilibrium point
(m/n, a/b) depends on the region in which a trajectory begins. If it starts in region B, for
instance, then it will move downward and leftward towards the equilibrium point. Depend-
ing on where the trajectory begins, it may move downward into region D, leftward into re-
gion A, or perhaps straight into the equilibrium point. If it enters into regions A or D, then
it will continue to move away from the rest point. We say that both rest points are
unstable, meaning (in this setting) there are trajectories near each point that head away
from them. These features are indicated in Figure 16.31.

It turns out that in each of the half-planes above and below the line y = a/b, there is
exactly one trajectory approaching the equilibrium point (m/n, a/b) (see Exercise 7).
Above these two trajectories the bass population increases and below them it decreases.
The two trajectories approaching the equilibrium point are suggested in Figure 16.32.
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FIGURE 16.31 Motion along the
trajectories near the rest points (0, 0)
and (m/n, a/b).
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FIGURE 16.32 Qualitative results of

analyzing the competitive-hunter model.

There are exactly two trajectories
approaching the point (m/n, a/b).

FIGURE 16.33 Trajectory direction
near the rest point (0, 0).
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FIGURE 16.35 The solution
x2 4+ y% = 1 is a limit cycle.

16.6 Systems of Equations and Phase Planes 16-39

Our graphical analysis leads us to conclude that, under the assumptions of the
competitive-hunter model, it is unlikely that both species will reach equilibrium levels.
This is because it would be almost impossible for the fish populations to move exactly
along one of the two approaching trajectories for all time. Furthermore, the initial popula-
tions point (x, yo) determines which of the two species is likely to survive over time, and
mutual coexistence of the species is highly improbable.

Limitations of the Phase-Plane Analysis Method

Unlike the situation for the competitive-hunter model, it is not always possible to deter-
mine the behavior of trajectories near a rest point. For example, suppose we know that the
trajectories near a rest point, chosen here to be the origin (0, 0), behave as in Figure 16.33.
The information provided by Figure 16.33 is not sufficient to distinguish between the three
possible trajectories shown in Figure 16.34. Even if we could determine that a trajectory
near an equilibrium point resembles that of Figure 16.34c, we would still not know how
the other trajectories behave. It could happen that a trajectory closer to the origin behaves
like the motions displayed in Figure 16.34a or 16.34b. The spiraling trajectory in Figure
16.34b can never actually reach the rest point in a finite time period.

~<
~
~

(0, Yo)

( ,’.\.\ X

(x0» Yo)
“ : 0 X /.—Nvo,y())
_/

o

e
N\
.

e

(a) (b) (©

FIGURE 16.34 Three possible trajectory motions: (a) periodic motion, (b) motion
toward an asymptotically stable rest point, and (c) motion near an unstable rest point.

Another Type of Behavior

[he system
d
@ =Y +x — x(x* + y2), (2a)
dy
7l yx? + %) (2b)

can be shown to have only one equilibrium point at (0, 0). Yet any trajectory starting on the
unit circle traverses it clockwise because, when x* + y? = 1, we have dy/dx = —x/y (see
Exercise 2). If a trajectory starts inside the unit circle, it spirals outward, asymptotically
approaching the circle as t — 00. If a trajectory starts outside the unit circle, it spirals in-
ward, again asymptotically approaching the circle as — 00. The circle x> + y2 = 1 is
called a limit cycle of the system (Figure 16.35). In this system, the values of x and y even-
tually become periodic.
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EXERCISES 16.6

. List three important considerations that are ignored in the
competitive-hunter model as presented in the text.

. For the system (2a and 2b), show that any trajectory starting on
the unit circle x> + y? = 1 will traverse the unit circle in a peri-
odic solution. First introduce polar coordinates and rewrite the
system as dr/dt = r(1 — ) and df/dt = 1.

. Develop a model for the growth of trout and bass assuming that in
isolation trout demonstrate exponential decay [so that a < 0 in
Equations (1a and 1b)] and that the bass population grows logisti-
cally with a population limit M. Analyze graphically the motion in
the vicinity of the rest points in your model. Is coexistence possible?

. How might the competitive-hunter model be validated? Include a
discussion of how the various constants a, b, m, and n might be
estimated. How could state conservation authorities use the model
to ensure the survival of both species?

. Consider another competitive-hunter model defined by

dx _ X\
dt_a(l kl)x bxy,

@=ml—l — nx
dt k2 y Vs

where x and y represent trout and bass populations, respectively.

a. What assumptions are implicitly being made about the growth
of trout and bass in the absence of competition?

b. Interpret the constants a, b, m, n, ki, and k; in terms of the
physical problem.

¢. Perform a graphical analysis:

i) Find the possible equilibrium levels.

ii) Determine whether coexistence is possible.

iii) Pick several typical starting points and sketch typical
trajectories in the phase plane.

iv) Interpret the outcomes predicted by your graphical
analysis in terms of the constants a, b, m, n, kj, and k,.

Note: When you get to part (iii), you should realize that five cases
exist. You will need to analyze all five cases.

. Consider the following economic model. Let P be the price of a
single item on the market. Let O be the quantity of the item avail-
able on the market. Both P and Q are functions of time. If one
considers price and quantity as two interacting species, the fol-
lowing model might be proposed:

dP b
E’“P(Q P)’
d

L _coyr-o.

where a, b, ¢, and f are positive constants. Justify and discuss the
adequacy of the model.

a. Ifa = 1,5 = 20,000, ¢ = 1, and f = 30, find the
equilibrium points of this system. If possible, classify each
equilibrium point with respect to its stability. If a point cannot
be readily classified, give some explanation.

b. Perform a graphical stability analysis to determine what will
happen to the levels of P and Q as time increases.

c¢. Give an economic interpretation of the curves that determine
the equilibrium points.

. Show that the two trajectories leading to (m/n, a/b) shown in

Figure 16.32 are unique by carrying out the following steps.
a. From system (1a and 1b) derive the following equation:
dy  (m — nx)y

dx  (a — by)x’
b. Separate variables, integrate, and exponentiate to obtain

yaefby = Kx"Me ¥

where K is a constant of integration.

c. Let f(») = y*/e® and g(x) = x™/e™. Show that f() has a
unique maximum of M,, = (a/eb)* when y = a/b as shown in
Figure 16.36. Similarly, show that g(x) has a unique maximum
M, = (m/en)" when x = m/n, also shown in Figure 16.36.

F»

FIGURE 16.36 Graphs of the functions
f(y) = y?/e® and g(x) = x"/e™.

d. Consider what happens as (x, y) approaches (m/n, a/b). Take
limits in part (b) as x — m/n and y — a/b to show that either



im (2 (€5 ] = &
x—m/n ghy x"
/b

y—a

or M,/M, = K. Thus any solution trajectory that approaches
(m/n, a/b) must satisfy

Y (M (am
e by Mx e™
. Show that only one trajectory can approach (m/n, a/b) from

below the line y = a/b. Pick yo < a/b. From Figure 16.36
you can see that f(yy) < M,, which implies that

M, [ m
1. (35) = sem <,

This in turn implies that

xm

W<MX-

Figure 16.36 tells you that for g(x) there is a unique value

xo < m/n satisfying this last inequality. That is, for each

v < a/b there is a unique value of x satisfying the equation in
part (d). Thus there can exist only one trajectory solution

approaching (m/n, a/b) from below, as shown in Figure 16.37.

. Use a similar argument to show that the solution trajectory
leading to (m/n, a/b) is unique if yo > a/b.
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FIGURE 16.37 For any
v < a/b only one solution
trajectory leads to the rest point

(m/n, a/b).

. Show that the second-order differential equation y" = F(x, y, y")

can be reduced to a system of two first-order differential equations

dy

o °

dz

dx - F(X,)’az)~

Can something similar be done to the nth-order differential equa-
tion y™ = F(x, »yL,y', ... ,y(”fl))?



SECOND-ORDER
DIFFERENTIAL EQUATIONS

OVERVIEW In this chapter we extend our study of differential equations to those of second
order. Second-order differential equations arise in many applications in the sciences and
engineering. For instance, they can be applied to the study of vibrating springs and electric
circuits. You will learn how to solve such differential equations by several methods in this
chapter.

Second-Order Linear Equations

An equation of the form

Py"(x) + Q)y'(x) + R)y(x) = G(x), (1)

which is linear in y and its derivatives, is called a second-order linear differential equa-
tion. We assume that the functions P, O, R, and G are continuous throughout some open
interval I. If G(x) is identically zero on /, the equation is said to be homogeneous; other-
wise it is called nonhomogeneous. Therefore, the form of a second-order linear homoge-
neous differential equation is

Px)y" + Q)" + R(x)y = 0. (@)

We also assume that P(x) is never zero for any x € /.

Two fundamental results are important to solving Equation (2). The first of these says
that if we know two solutions y; and y, of the linear homogeneous equation, then any
linear combination y = c;y; + ¢, is also a solution for any constants c¢; and c;.

THEOREM 1—The Superposition Principle If yi(x) and y,(x) are two solutions
to the linear homogeneous equation (2), then for any constants c¢; and c;, the
function

Y(x) = cilx) + caya(x)

is also a solution to Equation (2).

17-1



17-2

Chapter 17: Second-Order Differential Equations

Proof Substituting y into Equation (2), we have

Px)y" + Q(x)y" + R(x)y
= P)(c1y1 + c2y2)" + 0@)(ciyr + c2y2)" + Rx)(c1y1 + c2y2)
= Px) (" + cay”) + 0x) (e’ + ey2) + Rx)(ciyr + c2y2)
= ci(Py" + 0yt + R(x)y1) + (P + Ox)y2" + R(x)y2)

= 0, y; is a solution =0, y,isasolution
= ¢1(0) + ¢(0) = 0.

Therefore, y = c¢;y; + ¢y, is a solution of Equation (2). [ |

Theorem 1 immediately establishes the following facts concerning solutions to the
linear homogeneous equation.

1. A sum of two solutions y; + y, to Equation (2) is also a solution. (Choose ¢; =
Cy = 1)

2. A constant multiple ky; of any solution y; to Equation (2) is also a solution. (Choose
c|) = kandcz = 0)

3. The trivial solution y(x) = 0 is always a solution to the linear homogeneous equa-
tion. (Choose ¢; = ¢; = 0.)

The second fundamental result about solutions to the linear homogeneous equation
concerns its general solution or solution containing all solutions. This result says that
there are two solutions y; and y, such that any solution is some linear combination of them
for suitable values of the constants c¢; and c,. However, not just any pair of solutions will
do. The solutions must be linearly independent, which means that neither y; nor y, is a
constant multiple of the other. For example, the functions f(x) = e* and g(x) = xe™ are
linearly independent, whereas f(x) = x? and g(x) = 7x? are not (so they are linearly de-
pendent). These results on linear independence and the following theorem are proved in
more advanced courses.

THEOREM 2 If P, Q, and R are continuous over the open interval / and P(x) is
never zero on /, then the linear homogeneous equation (2) has two linearly
independent solutions y; and y;, on 1. Moreover, if y; and y, are any two linearly
independent solutions of Equation (2), then the general solution is given by

yx) = ciyix) + capa(x),

where c| and ¢; are arbitrary constants.

We now turn our attention to finding two linearly independent solutions to the special
case of Equation (2), where P, O, and R are constant functions.

Constant-Coefficient Homogeneous Equations
Suppose we wish to solve the second-order homogeneous differential equation

ay" + by +cy =0, (3)
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where a, b, and ¢ are constants. To solve Equation (3), we seek a function which when
multiplied by a constant and added to a constant times its first derivative plus a constant
times its second derivative sums identically to zero. One function that behaves this way is
the exponential function y = e™, when r is a constant. Two differentiations of this expo-
nential function give y' = re’™ and y” = r2e’™, which are just constant multiples of the

original exponential. If we substitute y = ¢’ into Equation (3), we obtain
ar’e’™ + bre’™ + ce™ = 0.

Since the exponential function is never zero, we can divide this last equation through by
e™. Thus, y = e™ is a solution to Equation (3) if and only if 7 is a solution to the algebraic
equation

ar’ + br + ¢ = 0. (4)

Equation (4) is called the auxiliary equation (or characteristic equation) of the differen-
tial equation ay” + by" + ¢y = 0. The auxiliary equation is a quadratic equation with
roots

—b — Vb?* — dac

2a

r and =

_ —b + Vb% — 4ac
B 2a

There are three cases to consider which depend on the value of the discriminant 5> — 4ac.

Case 1: b> — 4ac > 0. In this case the auxiliary equation has two real and unequal roots
ryand rp. Then y; = e and y, = e"** are two linearly independent solutions to Equation
(3) because e"** is not a constant multiple of e"* (see Exercise 61). From Theorem 2 we
conclude the following result.

THEOREM 3 If ; and r, are two real and unequal roots to the auxiliary
equation ar? + br + ¢ = 0, then

y = cre"" + e

is the general solution to ay” + by’ + ¢y = 0.

EXAMPLE 1  Find the general solution of the differential equation

y' =y =6y =0.
Solution Substitution of y = ¢’ into the differential equation yields the auxiliary
equation

r2—r—6=0,

which factors as

r—3)(r+2)=0.
The roots are r; = 3 and r, = —2. Thus, the general solution is

y = c1e> + cre .
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Case 2: b2 — 4ac = 0. In this case | = r, = —b/2a. To simplify the notation, let
r = —b/2a. Then we have one solution y; = ¢’ with 2ar + b = 0. Since multiplication
of e’ by a constant fails to produce a second linearly independent solution, suppose we try
multiplying by a function instead. The simplest such function would be u(x) = x, so let’s
see if y, = xe'* is also a solution. Substituting y; into the differential equation gives

ay,” + by, + cyy = aQQre™ + r’xe’™) + b(e"™ + rxe’™) + cxe’™

Qar + bye™ + (ar* + br + c)xe'’™
= 0(e™) + (0)xe™ = 0.

The first term is zero because » = —b/2a; the second term is zero because r solves the
auxiliary equation. The functions y; = ¢’ and y, = xe'" are linearly independent (see
Exercise 62). From Theorem 2 we conclude the following result.

THEOREM 4 If 7 is the only (repeated) real root to the auxiliary equation
ar’* + br + ¢ = 0, then

y = cre™ + cyxe™

is the general solution to ay” + by’ + ¢y = 0.

EXAMPLE 2  Find the general solution to
y'+ 4y + 4y = 0.

Solution The auxiliary equation is
rP+dr+4 =0,
which factors into
(r+2)2=0.

Thus, » = —2 is a double root. Therefore, the general solution is

y = cre™® + cyxe .

]
Case 3: b?—4ac < 0. In this case the auxiliary equation has two complex roots
ri = a + iBandr, = a — if3, where o and B are real numbers and i* = —1. (These real

numbers are @ = —b/2a and B = Vdac — b?/2a.) These two complex roots then give
rise to two linearly independent solutions

y1 = e@HPY = ¢¥(cos Bx + isin Bx) and y, = @ PX = ¢*(cos Bx — isin Bx).

(The expressions involving the sine and cosine terms follow from Euler’s identity in Sec-
tion 9.9.) However, the solutions y; and y, are complex valued rather than real valued.
Nevertheless, because of the superposition principle (Theorem 1), we can obtain from
them the two real-valued solutions

_1 I _ D U RN
V=50 + S =e cos Bx and Va= 5Ty Te sin Bx.

The functions y3 and y4 are linearly independent (see Exercise 63). From Theorem 2 we
conclude the following result.
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THEOREM 5 Ifry = a + iB and r, = a — i are two complex roots to the
auxiliary equation ar? + br + ¢ = 0, then

y = e*(c)cos Bx + ¢;sin Bx)

is the general solution to ay” + by" + ¢y = 0.

EXAMPLE 3  Find the general solution to the differential equation
y' =4y + 5y =0.
Solution The auxiliary equation is
r?—4r+5=0.

The roots are the complex pair r = (4 £ V16 — 20)/2orry =2 +iandr, =2 — i
Thus, @« = 2 and B = 1 give the general solution

y = e*(c; cosx + ¢, sin x). [

Initial Value and Boundary Value Problems

To determine a unique solution to a first-order linear differential equation, it was sufficient
to specify the value of the solution at a single point. Since the general solution to a second-
order equation contains two arbitrary constants, it is necessary to specify two conditions.
One way of doing this is to specify the value of the solution function and the value of its
derivative at a single point: y(xo) = yo and y'(xo) = y1. These conditions are called initial
conditions. The following result is proved in more advanced texts and guarantees the exis-
tence of a unique solution for both homogeneous and nonhomogeneous second-order
linear initial value problems.

THEOREM 6 If P, O, R, and G are continuous throughout an open interval /,
then there exists one and only one function y(x) satisfying both the differential
equation

P)y"(x) + O(x)y'(x) + Rx)y(x) = G(x)
on the interval 7, and the initial conditions

yxo) =yo  and  y'(x) =y

at the specified point x € /.

It is important to realize that any real values can be assigned to y, and y; and Theorem 6
applies. Here is an example of an initial value problem for a homogeneous equation.
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y
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FIGURE 17.1 Particular solution curve
for Example 4.

EXAMPLE 4  Find the particular solution to the initial value problem
V=2 +y=0, »0)=1 (0 =-1

Solution The auxiliary equation is
PP=2r+1=0r-1"=0.
The repeated real root is » = 1, giving the general solution
y = cie’ + ¢y xe”.
Then,
V' = cie’ + o(x + 1)e”.
From the initial conditions we have
1=c +c+0 and —1=c +c-1.
Thus, ¢; = 1 and ¢; = —2. The unique solution satisfying the initial conditions is
y = e* — 2xe".

The solution curve is shown in Figure 17.1. [

Another approach to determine the values of the two arbitrary constants in the general
solution to a second-order differential equation is to specify the values of the solution

function at two different points in the interval /. That is, we solve the differential equation
subject to the boundary values

yx1) =y and  y(x2) =y,

where x; and x, both belong to /. Here again the values for y; and y, can be any real
numbers. The differential equation together with specified boundary values is called a
boundary value problem. Unlike the result stated in Theorem 6, boundary value prob-
lems do not always possess a solution or more than one solution may exist (see Exercise
65). These problems are studied in more advanced texts, but here is an example for which
there is a unique solution.

EXAMPLE 5  Solve the boundary value problem

V' 4y =0,  0) =0, y(lwz) = 1.
Solution The auxiliary equation is > + 4 = 0, which has the complex roots r = +2i.
The general solution to the differential equation is
y = c¢1c0s 2x + ¢ sin 2x.
The boundary conditions are satisfied if

y0)=c+1+c+0=0

y(lﬂé) = ¢ cos(?) + o sin(E) =1.

It follows that ¢; = 0 and ¢; = 2. The solution to the boundary value problem is

y = 2sin 2x. [
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In Exercises 1-30, find the general solution of the given equation.

1. ' =y — 12y =0 2.3 =y =0

3.y"+3y —4y =0 4. y" =9 =0

5. " —4 =0 6. y' — 64y =0

7. 2" —y =3y =0 8 9" —y=0

9. 8" — 10y’ =3y =10 10. 3y" — 20" + 12y = 0

1. y" + 9 =0 12. " + 4y + 59 =0

13. " + 25y =0 14. y" +y =20

15. y" =2y + 5y =0 16. y" + 16y = 0

17. y" + 2y + 4 =0 18. " — 2" +3y =0

19. " + 4"+ 99 =0 20. 4" — 4" + 13y =0

21. y" =0 22. y" + 8" + 16y =0
dy  dy d’y  dy

23.@"‘45*‘4}/—0 24'E_6E+9y_0
dy  dy dy  dy

25.;4‘634‘9}/—0 26.4E—123+9y—0
dy  dy d’y  dy

27.4E+4$+y—0 28.4E—4a+)}—0
dy  dy dy  dy

29.9@‘5‘6@4’)1—0 30.9E—125+4y—0

In Exercises 31-40, find the unique solution of the second-order
initial value problem.

31. y" + 6y + 5y =0, y0)=0,»'(0) =3
32. y" + 16y =0, y0) =2, y'(0)= -2

33. y" + 12y =0, y(0) =0, »y'(0)=1

34, 12" + 59" =2y =0, »0) =1, y'(0)=—1
35. y" + 8 =0, »0) = -1, »'(0)=2

36. y' + 4y +4y =0, »0) =0,y (0 =1

37. y' =4 +4y =0, y0)=1,y'(0)=0
38. 4" — 4" +y =0, y0)=4,y0) =4

2.4 Y o0 w0 =2 Y=t
. dxz dx y = U, y( )_ 5 dx( )_
d’  dy dy
40. 9@ — IZa +4y =0, »0) = —1, $(0) =1

In Exercises 41-55, find the general solution.

41. y" =2y =3y =0 42. 60" —y' —y=20
43. 4" + 4" +y =0 44. 9" + 12" + 4y =0
45. 4" + 20y = 0 46. " + 2y +2y =0
47. 259" + 10" +y =0 48. 6" + 13y’ — 5y =0
49. 4" + 4" + 5y =0 50. y" + 4y + 6y =0

51. 16y" —24y" + 9y =0 52. 6" =5 =6y =0
53. 9" + 24y + 16y = 0 54. 4" + 16y" + 52y =0
55. 6" — 5y —4y =0

In Exercises 56—60, solve the initial value problem.

56. y" —2y' +2y =0, y(0)=0,»'(0)=2

57. y" + 2y + y =0, »0) =1,y (0) =1

58. 4" —4y' +y =0, w0)=—-1,»'(0)=2

59. 3y" +y' — 14y =0, y0)=2,'(0)=—1

60. 4" + 4" + 5y =0, y(m) =1,y (m)=0

61. Prove that the two solution functions in Theorem 3 are linearly in-
dependent.

62. Prove that the two solution functions in Theorem 4 are linearly in-
dependent.

63. Prove that the two solution functions in Theorem 5 are linearly in-
dependent.

64. Prove that if y; and y, are linearly independent solutions to the
homogeneous equation (2), then the functions y3 = y; + y, and
v4 = y1 — ), are also linearly independent solutions.

65. a. Show that there is no solution to the boundary value problem

y'+4y =0, y0) =0, y(m) = 1.

b. Show that there are infinitely many solutions to the boundary
value problem

y'+4 =0, »0) =0, y(w) = 0.

66. Show that if a, b, and ¢ are positive constants, then all solutions of
the homogeneous differential equation

ay’" + by +cy=0

approach zero as x — 00.
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Nonhomogeneous Linear Equations

In this section we study two methods for solving second-order linear nonhomogeneous
differential equations with constant coefficients. These are the methods of undetermined
coefficients and variation of parameters. We begin by considering the form of the general
solution.

Form of the General Solution
Suppose we wish to solve the nonhomogeneous equation
ay”" + by + ¢y = G(x), (1)

where a, b, and ¢ are constants and G is continuous over some open interval /. Let
Ve = c1y1 T czy; be the general solution to the associated complementary equation

ay" + by +cy = 0. (2)

(We learned how to find y. in Section 17.1.) Now suppose we could somehow come up
with a particular function y, that solves the nonhomogeneous equation (1). Then the sum

y=yetwm (3)
also solves the nonhomogeneous equation (1) because
a(ye + yp)" + b(ye + yp)" + c(ye + p)
= (ay." + by + cyo) + (" + by’ + )
=0+ Gx) ye solves Eq. (2) and y, solves Eq. (1)
= G(x).
Moreover, if y = y(x) is the general solution to the nonhomogeneous equation (1), it must
have the form of Equation (3). The reason for this last statement follows from the observa-
tion that for any function yj, satisfying Equation (1), we have
a(y = yp)" + by =)'+ cy — )
(@" + by + cy) — (ay,” + by’ + cyp)
G(x) — G(x) = 0.

Thus, y. = y — y, is the general solution to the homogeneous equation (2). We have
established the following result.

THEOREM 7 The general solution y = y(x) to the nonhomogeneous differen-
tial equation (1) has the form

Y=Yt

where the complementary solution y. is the general solution to the associated
homogeneous equation (2) and y, is any particular solution to the nonhomoge-
neous equation (1).
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The Method of Undetermined Coefficients

This method for finding a particular solution y, to the nonhomogeneous equation (1) ap-
plies to special cases for which G(x) is a sum of terms of various polynomials p(x) multi-
plying an exponential with possibly sine or cosine factors. That is, G(x) is a sum of terms
of the following forms:
pix)e’, Ppa(x)e™ cos Bx, p3(x)e™ sin Bx.

For instance, 1 — x, e, xe*, cos x, and 5e* — sin 2x represent functions in this category.
(Essentially these are functions solving homogeneous linear differential equations with
constant coefficients, but the equations may be of order higher than two.) We now present
several examples illustrating the method.

EXAMPLE 1 Solve the nonhomogeneous equation y” — 2y’ — 3y = 1 — x2.

Solution The auxiliary equation for the complementary equation y” — 2y’ — 3y = 0 is
PP=2r=3=@r+Dr—3)=0.
It has the roots » = —1 and » = 3 giving the complementary solution
Ve = cre 4 e’

Now G(x) = 1 — x? is a polynomial of degree 2. It would be reasonable to assume that a
particular solution to the given nonhomogeneous equation is also a polynomial of degree 2
because if y is a polynomial of degree 2, then y” — 2y’ — 3y is also a polynomial of de-
gree 2. So we seek a particular solution of the form

yp=Ax2+Bx+C.

We need to determine the unknown coefficients 4, B, and C. When we substitute the poly-
nomial y, and its derivatives into the given nonhomogeneous equation, we obtain

24 — 2(24x + B) — 3(Ax* + Bx + C) = 1 — x?
or, collecting terms with like powers of x,
—34x* + (=44 — 3B)x + (24 — 2B — 3C) = 1 — x°.

This last equation holds for all values of x if its two sides are identical polynomials of
degree 2. Thus, we equate corresponding powers of x to get

—34 = —1, —44 — 3B =0, and 24 — 2B — 3C = 1.

These equations imply in turn that 4 = 1/3, B = —4/9, and C = 5/27. Substituting these
values into the quadratic expression for our particular solution gives

yp=%x2—gx+f.

By Theorem 7, the general solution to the nonhomogeneous equation is

lxz—ix+i. | |

_ _ - 3
y—yc+yp—cle‘+czex+3 9 27
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EXAMPLE 2  Find a particular solution of y” — ' = 2 sin x.

Solution If we try to find a particular solution of the form
yp = Asinx
and substitute the derivatives of y, in the given equation, we find that 4 must satisfy the
equation
—Asinx + Acosx = 2sinx

for all values of x. Since this requires 4 to equal both —2 and 0 at the same time, we con-
clude that the nonhomogeneous differential equation has no solution of the form A4 sin x.
It turns out that the required form is the sum

Yp = Asinx + B cos x.

The result of substituting the derivatives of this new trial solution into the differential
equation is

—Asinx — Bcosx — (Acosx — Bsinx) = 2sinx
or
(B—A)sinx — (4 + B)cosx = 2sinx.

This last equation must be an identity. Equating the coefficients for like terms on each side
then gives

B—-—4=2 and A+ B=0.

Simultaneous solution of these two equations gives A = —1 and B = 1. Our particular
solution is

Yp = COSX — sinx. [

EXAMPLE 3  Find a particular solution of y" — 3y’ + 2y = 5¢*.

Solution If we substitute
Yo = Ae*

and its derivatives in the differential equation, we find that

Ae* — 34e* + 24e" = 5e*
or

0 = 5e*.
However, the exponential function is never zero. The trouble can be traced to the fact that
y = e is already a solution of the related homogeneous equation
y' =3y +2y=0.
The auxiliary equation is
PP =3r+2=0-1)r—-2) =0,

which has » = 1 as a root. So we would expect Ae* to become zero when substituted into
the left-hand side of the differential equation.

The appropriate way to modify the trial solution in this case is to multiply 4e* by x.
Thus, our new trial solution is

yp = Axe”.
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The result of substituting the derivatives of this new candidate into the differential equation is
(Axe™ + 24e*) — 3(Axe™ + Ae¥) + 24xe™ = 5¢*
or
—Ae* = Se*.
Thus, A = —5 gives our sought-after particular solution

Yp = —5xe”. ]

EXAMPLE 4  Find a particular solution of y” — 6y’ + 9y = &3*.

Solution The auxiliary equation for the complementary equation
r2—6r+9=(r—3)2=0

has » = 3 as a repeated root. The appropriate choice for y, in this case is neither Ae™** nor
Axe™ because the complementary solution contains both of those terms already. Thus, we
choose a term containing the next higher power of x as a factor. When we substitute

Vp = Ax2 eSx
and its derivatives in the given differential equation, we get

(94x%e™ + 124xe® + 24e*) — 6(34x%e> + 24xe™) + 94x%e™ = ¥

=e
or
24> = ¥,
Thus, 4 = 1/2, and the particular solution is
Yp = %x2e3x. [

When we wish to find a particular solution of Equation (1) and the function G(x) is the
sum of two or more terms, we choose a trial function for each term in G(x) and add them.

EXAMPLE 5  Find the general solution to y” — y' = 5¢* — sin 2x.

Solution We first check the auxiliary equation

= =0.
Its roots are » = 1 and » = 0. Therefore, the complementary solution to the associated ho-
mogeneous equation is

Ve = cie* + .

We now seek a particular solution y,. That is, we seek a function that will produce
Se* — sin 2x when substituted into the left-hand side of the given differential equation.
One part of y, is to produce 5e”, the other —sin 2x.

Since any function of the form ce” is a solution of the associated homogeneous equa-
tion, we choose our trial solution y, to be the sum

Vp = Axe™ + Bcos 2x + Csin 2x,

including xe* where we might otherwise have included only e*. When the derivatives of y,
are substituted into the differential equation, the resulting equation is

(Axe* + 24e* — 4B cos 2x — 4C sin 2x)
— (Axe™ + Ae™ — 2B sin 2x + 2C cos 2x) = 5e* — sin 2x
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or
Ae* — (4B + 2C)cos 2x + (2B — 4C) sin 2x = 5S¢ — sin 2x.
This equation will hold if
A=75, 4B + 2C = 0, 2B — 4C = —1,
ord =5,B= —1/10,and C = 1/5. Our particular solution is

. 1y
Yp = Sxe 10 €8 2x + 5 sin 2x.

The general solution to the differential equation is
Y=yt y=ce +c +5xe“‘—i0052x+lsin2x ]
c T Vp 1 2 10 3 .

You may find the following table helpful in solving the problems at the end of this
section.

TABLE 17.1  The method of undetermined coefficients for selected equations

of the form
ay” + by’ + ¢y = G(x).
If G(x) has a term Then include this
that is a constant expression in the
multiple of . .. And if trial function for y,.
e’ r is not a root of Ae™

the auxiliary equation

r is a single root of the Axe™
auxiliary equation
r is a double root of the Ax%e’™

auxiliary equation

sin kx, cos kx ki is not a root of Bcoskx + Csinkx
the auxiliary equation

x>+ gx +m 0 is not a root of the Dx*+ Ex + F
auxiliary equation
0 is a single root of the Dx3 + Ex* + Fx
auxiliary equation
0 is a double root of the Dx* + Ex? + Fx?

auxiliary equation

The Method of Variation of Parameters

This is a general method for finding a particular solution of the nonhomogeneous equation
(1) once the general solution of the associated homogeneous equation is known. The
method consists of replacing the constants ¢; and ¢; in the complementary solution by
functions v; = v(x) and v, = vy(x) and requiring (in a way to be explained) that the
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resulting expression satisfy the nonhomogeneous equation (1). There are two functions to
be determined, and requiring that Equation (1) be satisfied is only one condition. As a sec-
ond condition, we also require that

v’y + vy, = 0. (4)
Then we have

Yy =viy + vy,
Y=o’ + vy,
Y=o vy oy +wy

If we substitute these expressions into the left-hand side of Equation (1), we obtain

vilayt” + by1" + cy) + va(@” + by + cy) + a(vi'y + v'y') = Gx).

The first two parenthetical terms are zero since y; and y, are solutions of the associated
homogeneous equation (2). So the nonhomogeneous equation (1) is satisfied if, in addition
to Equation (4), we require that

aui'y’ + v2'y') = G). (5)
Equations (4) and (5) can be solved together as a pair
vi'y1 + vy, =0,
G(x)
vy + v =

for the unknown functions v’ and v,’. The usual procedure for solving this simple system
is to use the method of determinants (also known as Cramer’s Rule), which will be demon-
strated in the examples to follow. Once the derivative functions v, and v," are known, the
two functions v; = v(x) and v, = vy(x) can be found by integration. Here is a summary
of the method.

Variation of Parameters Procedure

To use the method of variation of parameters to find a particular solution to the
nonhomogeneous equation

ay" + by + ¢y = G(x),
we can work directly with Equations (4) and (5). It is not necessary to rederive
them. The steps are as follows.
1. Solve the associated homogeneous equation
ay" + by +cy=0
to find the functions y; and y;.
2. Solve the equations

09

- o GW
vyt =4

vi'yr + vy

simultaneously for the derivative functions v;" and v;’.
3. Integrate v’ and v;’ to find the functions v; = v(x) and v, = vy(x).
4. Write down the particular solution to nonhomogeneous equation (1) as

Yp = vy T vy
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EXAMPLE 6  Find the general solution to the equation
y" + y = tanx.

Solution The solution of the homogeneous equation
V' +y=0
is given by
Ve = c1cosx + ¢ sinx.

Since yi(x) = cos x and y,(x) = sin x, the conditions to be satisfied in Equations (4) and
(5) are

vy’ cosx + vy’ sinx = 0,
—v;'sinx + vy’ cosx = tanx. a=1
Solution of this system gives

0 sin x

, _ ltanx cosx —tanxsinx _ —sin’x
Vi —‘ - Tcosx

cosx sinx cos®x + sin’x

sinx  cosx
Likewise,

‘ cosx 0
!

—sinx tanx .
v, = ——————"— =inx.
‘ cosx sinx

—sinx  cosx

After integrating v," and v, we have
L2
—sin” x
vi(x) = /cosx dx

—/(secx — cos x) dx

—In|sec x + tanx| + sinux,

and

vy(x) = /sinxdx = —COSX.

Note that we have omitted the constants of integration in determining v; and v,. They
would merely be absorbed into the arbitrary constants in the complementary solution.
Substituting v; and v, into the expression for y, in Step 4 gives

Yp = [In|secx + tan x| + sinx] cosx + (—cos x) sin x
= (—cosx) In|sec x + tan x|.

The general solution is

Yy =cjcosx + ¢ysinx — (cosx) In|secx + tan x| ]
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EXAMPLE 7  Solve the nonhomogeneous equation
V' +y = 2y = xe".
Solution The auxiliary equation is
PHr=2=r+2r—-1)=0
giving the complementary solution
Ve = cre” X + e,
The conditions to be satisfied in Equations (4) and (5) are
vi'e ™ + et =0,
—2u)'e ™ + vy'et = xet. a=1

Solving the above system for v’ and v," gives

0 e
) xe* e~ —xe** 1 s
vy = "o . 3¢ * —§x€ .
‘ e e e
_26—2)( ex
Likewise,
‘ e 0
, —2e™ % xe* xe ™ X
U = — = — = 7'
2 3e " 3¢ 3

Integrating to obtain the parameter functions, we have

vi(x) = /—;xe&" dx
B _l xe3x _ Lh
- 3( 3 /3 d")

and

2
vy(x) = /;C dx = %

[ =30 . 2\
Yp = [27 e + 6 e

1, 1 1,

Therefore,

—_ = X + = X.
7€ g xe cre
The general solution to the differential equation is
y =cie ¥+ et — %xex + %xZex,

where the term (1/27)e” in y, has been absorbed into the term c,e” in the complementary
solution. -
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EXERCISES 17.2

Solve the equations in Exercises 1-16 by the method of undetermined
coefficients.

Ly =3y =10y = -3 2. 0" =3y - My =20 =3
3. y" =y =sinx 4. y" + 2y +y=x>
5. 9" +y = cos3x 6.y +y=e"
7.9y —y —2y=20cosx 8.y +y=2x+ 3¢
9.y —y=e+x’ 10. y" +2y" + p = 65sin2x
11. y" —y' — 6y =e* — Tcosx
12 y" + 3y + 2y =e ™ + e —x
d’y  _dy 5 d’y dy
13.@4‘5%—15)6 14.E—%——8x+3
dy dy d’y  _dy )
15. 5 =3, =~ 1 16— S+ T =ant 4 5x 4]

Solve the equations in Exercises 17-28 by variation of parameters.
17. y" +y' =x

4 — _E E

18. y" + y = tanx, 2<x<2
19. y" +y = sinx 20. y' + 2" +y=¢"
21. y' + 2y +y =" 22. y' —y=x
23. )" —y=e" 24. y" — y =sinx
25. y" + 4" + 5y =10 26. y" —y' =27

dzy T T
27.E+y—secx, _5<x<5

d’ d
28. %—l=e“‘cosx, x>0

dx dx

In each of Exercises 29-32, the given differential equation has a par-
ticular solution y, of the form given. Determine the coefficients in yy,.
Then solve the differential equation.

29. y" — 5y = xe™, Yp = Ax?e> + Bxe™
30. y”
31. y" +y =2cosx + sinx, y, = Axcosx + Bxsinx
32. y"

, . _ .
— )y =cosx + sinx, y, = Acosx + Bsinx

+y =2y =xe', y, = Ax%e* + Bxe”

In Exercises 33-36, solve the given differential equations (a) by
variation of parameters and (b) by the method of undetermined
coefficients.

dy dy dy v 2
33.72—5—6 + e 34.E—4a+4y—26
d* dy . d*y d o

35.?—4a—5y—e +4 36.E—9T—9e

Solve the differential equations in Exercises 37—46. Some of the equa-
tions can be solved by the method of undetermined coefficients, but
others cannot.

37. y" + y=cotx, 0<x<m

38. y' +y=cscx, 0<x<m

39. " — 8y =¥ 40. y" + 4y = sinx

41. y" —y' =x° 2. 9" +4 +5=x+2

43. )" + 2y =x? — ¢ 44. y" + 9y = 9x — cosx

45. y" + y = secxtanx, —% <x < %

46. y" — 3y 4+ 2y =" — ¥

The method of undetermined coefficients can sometimes be used to
solve first-order ordinary differential equations. Use the method to
solve the equations in Exercises 47-50.

47. y' — 3y =¢€* 48. y' + 4y =x
49. y' — 3y = 5¢* 50. y' + y =sinx

Solve the differential equations in Exercises 51 and 52 subject to the

given initial conditions.
d*y

51. — +y= seczx, —
dx? 7

ST}

<x< 3 y0) =y =1
2

d’y o, B L2
52.E+y—e 3 2(0) = 0,50 =73

In Exercises 53-58, verify that the given function is a particular solu-
tion to the specified nonhomogeneous equation. Find the general solu-
tion and evaluate its arbitrary constants to find the unique solution sat-
isfying the equation and the given initial conditions.

x2 ’
=% »p=7%—x y0)=0,(0)=0

54. y" +y=x, yp,=2sinx +x, »0)=0,)»"(0)=0

55. %y" + '+ y = 4e*(cosx — sinx),

53. " 4+

Yp = 2e*cosx, ¥(0) =0,y (0) =1
56. y' =y —2y=1-2x, yp=x—1, p0)=0,»'(0) =1
57. 0" =2y +y=2e", y,=x%, y0)=1,(0)=0
58. ' — 2y +y=x"le5, x>0,

Yo =xe"lnx, y(1)=e, y'(1) =0
In Exercises 59 and 60, two linearly independent solutions y; and y;
are given to the associated homogeneous equation of the variable-
coefficient nonhomogeneous equation. Use the method of variation of

parameters to find a particular solution to the nonhomogeneous equa-
tion. Assume x > 0 in each exercise.

59. xy" + 2xy' — 2y = xz, = xiz, Y2 =X
60. x2yrr + xy! —y=x, y= x_l, Y =X
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Applications

mass m
at equilibrium

FIGURE 17.2 Mass m
stretches a spring by
length s to the equilibrium
position at y = 0.

a position T
after release

I—
|

Yo i start F,
position

y

FIGURE 17.3  The propulsion
force (weight) £, pulls the mass
downward, but the spring
restoring force F and frictional
force F; pull the mass upward.
The motion starts at y = y, with
the mass vibrating up and down.

In this section we apply second-order differential equations to the study of vibrating
springs and electric circuits.

Vibrations

A spring has its upper end fastened to a rigid support, as shown in Figure 17.2. An object
of mass m is suspended from the spring and stretches it a length s when the spring comes
to rest in an equilibrium position. According to Hooke’s Law (Section 6.5), the tension
force in the spring is ks, where £ is the spring constant. The force due to gravity pulling
down on the spring is mg, and equilibrium requires that

ks = mg. (1)

Suppose that the object is pulled down an additional amount y, beyond the equilibrium po-
sition and then released. We want to study the object’s motion, that is, the vertical position
of its center of mass at any future time.

Let y, with positive direction downward, denote the displacement position of the ob-
ject away from the equilibrium position y = 0 at any time ¢ after the motion has started.
Then the forces acting on the object are (see Figure 17.3)

F, = mg, the propulsion force due to gravity,
Fy = k(s + ), the restoring force of the spring’s tension,

d
F, = 8%, a frictional force assumed proportional to velocity.
The frictional force tends to retard the motion of the object. The resultant of these forces is
F = F, — Fy — F}, and by Newton’s second law I = ma, we must then have

d’y dy
m?—mg—ks—ky—ﬁﬁ.

By Equation (1), mg — ks = 0, so this last equation becomes

d’ d
mT;+5%+ky=O, @)
subject to the initial conditions y(0) = yg and y'(0) = 0. (Here we use the prime notation
to denote differentiation with respect to time ¢.)

You might expect that the motion predicted by Equation (2) will be oscillatory about
the equilibrium position y = 0 and eventually damp to zero because of the retarding fric-
tional force. This is indeed the case, and we will show how the constants m, 6, and k deter-
mine the nature of the damping. You will also see that if there is no friction (so 6 = 0),
then the object will simply oscillate indefinitely.

Simple Harmonic Motion

Suppose first that there is no retarding frictional force. Then 6 = 0 and there is no damp-
ing. If we substitute @ = V k/m to simplify our calculations, then the second-order equa-
tion (2) becomes

Y+ @ty =0, with ¥(0) = yo and y'(0) = 0.



17-18 Chapter 17: Second-Order Differential Equations

FIGURE 17.4
¢ = Ccos ¢.

c¢; = Csin ¢ and

The auxiliary equation is
2+ @ =0,

having the imaginary roots » = +wi. The general solution to the differential equation in
(2)is

y = cjcoswt + ¢;sin wt. (3)
To fit the initial conditions, we compute
y' = —ciwsin ot + c,w cos wt
and then substitute the conditions. This yields ¢; = yp and ¢; = 0. The particular solution
y = Yo cos wt (4)

describes the motion of the object. Equation (4) represents simple harmonic motion of
amplitude y, and period 7 = 27/ w.

The general solution given by Equation (3) can be combined into a single term by
using the trigonometric identity

sin(wt + ¢) = cos wt sin ¢ + sin wt cos ¢.
To apply the identity, we take (see Figure 17.4)
¢y = Csin ¢ and c; = Ccos ¢,

where

o c
C= Ve + ¢? and ¢ = tan [t

&)

Then the general solution in Equation (3) can be written in the alternative form
y = Csin (ot + ¢). (5)

Here C and ¢ may be taken as two new arbitrary constants, replacing the two constants c;
and c¢,. Equation (5) represents simple harmonic motion of amplitude C and period
T = 27/w. The angle wt + ¢ is called the phase angle, and ¢ may be interpreted as its
initial value. A graph of the simple harmonic motion represented by Equation (5) is given
in Figure 17.5.

Period
2
—r-
I I
C I I
Csin ¢ ! !
| |
t
0 \/ \/
7
-C

y=Csin(wt + ¢)

FIGURE 17.5 Simple harmonic motion of amplitude C
and period T with initial phase angle ¢ (Equation 5).
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Damped Motion

Assume now that there is friction in the spring system, so & # 0. If we substitute
® = Vk/mand 2b = §/m, then the differential equation (2) is

Y+ 2by + @’y = 0. (6)
The auxiliary equation is
r? 4 2br + w? =0,

with roots » = —b + Vb? — w? Three cases now present themselves, depending upon
the relative sizes of b and w.

Case 1: b = . The double root of the auxiliary equation is real and equals » = w. The
general solution to Equation (6) is

y = (c1 + cat)e” .

This situation of motion is called critical damping and is not oscillatory. Figure 17.6a
shows an example of this kind of damped motion.

Case 2: b > w. The roots of the auxiliary equation are real and unequal, given by
r=—-b+ Vb?>— wandr, = —b — Vb* — *. The general solution to Equation (6)

is given by

(=o+Vrr—o?) (~b- V=)

y = ce + cre

Here again the motion is not oscillatory and both | and , are negative. Thus y approaches
zero as time goes on. This motion is referred to as overdamping (see Figure 17.6b).

Case 3: b < w. The roots to the auxiliary equation are complex and given by
r=—b + iVw? — b% The general solution to Equation (6) is given by

y = e_b’<cl cosVa? — bt + ¢, sinVa? — b2t>.

This situation, called underdamping, represents damped oscillatory motion. It is analo-
gous to simple harmonic motion of period 7 = 27/ w* — b? except that the amplitude
is not constant but damped by the factor e . Therefore, the motion tends to zero as ¢
increases, so the vibrations tend to die out as time goes on. Notice that the period
T =27/ Vw* — b? is larger than the period T) = 27/w in the friction-free system.
Moreover, the larger the value of b = §/2m in the exponential damping factor, the more
quickly the vibrations tend to become unnoticeable. A curve illustrating underdamped mo-
tion is shown in Figure 17.6c.

Yy y Yy
A
t ’ t /\ t
0 0 0
y=(+0e! y=2¢2_¢! y=e"'sin(5t + w/4)
(a) Critical damping (b) Overdamping (c) Underdamping

FIGURE 17.6 Three examples of damped vibratory motion for a spring system with
friction, so 6 # 0.
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An external force F(f) can also be added to the spring system modeled by Equation

(2). The forcing function may represent an external disturbance on the system. For in-

stance, if the equation models an automobile suspension system, the forcing function

might represent periodic bumps or potholes in the road affecting the performance of the

suspension system; or it might represent the effects of winds when modeling the vertical

motion of a suspension bridge. Inclusion of a forcing function results in the second-order
nonhomogeneous equation

d’ | dy
m o + adt + ky = F(1). (7)

We leave the study of such spring systems to a more advanced course.

Electric Circuits

The basic quantity in electricity is the charge g (analogous to the idea of mass). In an elec-
tric field we use the flow of charge, or current / = dq/dt, as we might use velocity in a
gravitational field. There are many similarities between motion in a gravitational field and
the flow of electrons (the carriers of charge) in an electric field.

Consider the electric circuit shown in Figure 17.7. It consists of four components:
voltage source, resistor, inductor, and capacitor. Think of electrical flow as being like a
fluid flow, where the voltage source is the pump and the resistor, inductor, and capacitor
tend to block the flow. A battery or generator is an example of a source, producing a volt-
age that causes the current to flow through the circuit when the switch is closed. An elec-
tric light bulb or appliance would provide resistance. The inductance is due to a magnetic
field that opposes any change in the current as it flows through a coil. The capacitance is
normally created by two metal plates that alternate charges and thus reverse the current
flow. The following symbols specify the quantities relevant to the circuit:

q: charge at a cross section of a conductor measured in coulombs (abbreviated c);

I: current or rate of change of charge dq/dt (flow of electrons) at a cross section of a
conductor measured in amperes (abbreviated A);

E: electric (potential) source measured in volts (abbreviated V);
V. difference in potential between two points along the conductor measured in volts (V).

R, Resistor

NV

Voltage

source L, Inductor

C, Capacitor

FIGURE 17.7 An electric circuit.

Ohm observed that the current / flowing through a resistor, caused by a potential dif-
ference across it, is (approximately) proportional to the potential difference (voltage drop).
He named his constant of proportionality 1/R and called R the resistance. So Ohm s law is



models the given situation.
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Similarly, it is known from physics that the voltage drops across an inductor and a ca-

pacitor are
dil q
L 7 and C

where L is the inductance and C is the capacitance (with g the charge on the capacitor).

The German physicist Gustav R. Kirchhoff (1824—1887) formulated the law that the
sum of the voltage drops in a closed circuit is equal to the supplied voltage E(f). Symboli-
cally, this says that

dl | 94

RI + L di + C
Since I = dg/dt, Kirchhoff’s law becomes

d’q  dq 1

L?—’_RE_FECI_E(O. (8)

The second-order differential equation (8), which models an electric circuit, has exactly

the same form as Equation (7) modeling vibratory motion. Both models can be solved

using the methods developed in Section 17.2.

= E().

Summary

The following chart summarizes our analogies for the physics of motion of an object in a
spring system versus the flow of charged particles in an electrical circuit.

Linear Second-Order Constant-Coefficient Models

Mechanical System Electrical System

my" + &y + ky = F() Lqg" + Rq' + %q = E(1)

y: displacement q: charge

v velocity q'": current

y":  acceleration q": change in current

m mass L: inductance

o: damping constant R: resistance

k: spring constant 1/C:  where C is the capacitance

F(¢): forcing function E(f):  voltage source

EXERCISES 17.3
1. A 16-1b weight is attached to the lower end of a coil spring sus- 2. An 8-1b weight stretches a spring 4 ft. The spring—mass system re-

pended from the ceiling and having a spring constant of 1 Ib/ft. sides in a medium offering a resistance to the motion that is nu-
The resistance in the spring—mass system is numerically equal to merically equal to 1.5 times the instantaneous velocity. If the
the instantaneous velocity. At + = 0 the weight is set in motion weight is released at a position 2 ft above its equilibrium position
from a position 2 ft below its equilibrium position by giving it a with a downward velocity of 3 ft/sec, write an initial value prob-
downward velocity of 2 ft/sec. Write an initial value problem that lem modeling the given situation.
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3. A 20-1b weight is hung on an 18-in. spring and stretches it 6 in.

The weight is pulled down 5 in. and 5 1b are added to the weight. If
the weight is now released with a downward velocity of vy in./sec,
write an initial value problem modeling the vertical displacement.

. A 10-1b weight is suspended by a spring that is stretched 2 in. by
the weight. Assume a resistance whose magnitude is 20/ Vg Ib
times the instantaneous velocity v in feet per second. If the weight
is pulled down 3 in. below its equilibrium position and released,
formulate an initial value problem modeling the behavior of the
spring—mass system.

. An (open) electrical circuit consists of an inductor, a resistor, and
a capacitor. There is an initial charge of 2 coulombs on the capac-
itor. At the instant the circuit is closed, a current of 3 amperes is
present and a voltage of E(¢) = 20 cos ¢ is applied. In this circuit
the voltage drop across the resistor is 4 times the instantaneous
change in the charge, the voltage drop across the capacitor is
10 times the charge, and the voltage drop across the inductor is
2 times the instantaneous change in the current. Write an initial
value problem to model the circuit.

. An inductor of 2 henrys is connected in series with a resistor
of 12 ohms, a capacitor of 1/16 farad, and a 300 volt battery.
Initially, the charge on the capacitor is zero and the current is
zero. Formulate an initial value problem modeling this electrical
circuit.

Mechanical units in the British and metric systems may be helpful
in doing the following problems.

Unit British System MKS System
Distance Feet (ft) Meters (m)
Mass Slugs Kilograms (kg)
Time Seconds (sec) Seconds (sec)
Force Pounds (1b) Newtons (N)
g(earth) 32 ft/sec? 9.81 m/sec?

. A 16-1b weight is attached to the lower end of a coil spring sus-
pended from the ceiling and having a spring constant of 1 1b/ft.
The resistance in the spring—mass system is numerically equal to
the instantaneous velocity. At + = 0 the weight is set in motion
from a position 2 ft below its equilibrium position by giving it a
downward velocity of 2 ft/sec. At the end of 7 sec, determine
whether the mass is above or below the equilibrium position and
by what distance.

. An 8-1b weight stretches a spring 4 ft. The spring—mass system
resides in a medium offering a resistance to the motion equal to
1.5 times the instantaneous velocity. If the weight is released at a
position 2 ft above its equilibrium position with a downward
velocity of 3 ft/sec, find its position relative to the equilibrium
position 2 sec later.

. A 20-1b weight is hung on an 18-in. spring stretching it 6 in. The
weight is pulled down 5 in. and 5 1b are added to the weight. If the
weight is now released with a downward velocity of v in./sec,
find the position of mass relative to the equilibrium in terms of vy
and valid for any time ¢ = 0.

10.

11.

12.

13.

14.

15.

16.

17.

18.

A mass of 1 slug is attached to a spring whose constant is 25/4
Ib/ft. Initially the mass is released 1 ft above the equilibrium posi-
tion with a downward velocity of 3 ft/sec, and the subsequent
motion takes place in a medium that offers a damping force nu-
merically equal to 3 times the instantaneous velocity. An external
force f(f) is driving the system, but assume that initially f(¢) = 0.
Formulate and solve an initial value problem that models the
given system. Interpret your results.

A 10-1b weight is suspended by a spring that is stretched 2 in. by
the weight. Assume a resistance whose magnitude is 40/ Vg Ib
times the instantaneous velocity in feet per second. If the weight
is pulled down 3 in. below its equilibrium position and released,
find the time required to reach the equilibrium position for the
first time.

A weight stretches a spring 6 in. It is set in motion at a point 2 in. be-
low its equilibrium position with a downward velocity of 2 in./sec.

a. When does the weight return to its starting position?
b. When does it reach its highest point?
c. Show that the maximum velocity is 2V2g + 1 in./sec.

A weight of 10 Ib stretches a spring 10 in. The weight is drawn
down 2 in. below its equilibrium position and given an initial ve-
locity of 4 in./sec. An identical spring has a different weight at-
tached to it. This second weight is drawn down from its equilib-
rium position a distance equal to the amplitude of the first motion
and then given an initial velocity of 2 ft/sec. If the amplitude of
the second motion is twice that of the first, what weight is at-
tached to the second spring?

A weight stretches one spring 3 in. and a second weight stretches
another spring 9 in. If both weights are simultaneously pulled
down 1 in. below their respective equilibrium positions and then
released, find the first time after r = O when their velocities are
equal.

A weight of 16 1b stretches a spring 4 ft. The weight is pulled
down 5 ft below the equilibrium position and then released. What
initial velocity vy given to the weight would have the effect of
doubling the amplitude of the vibration?

A mass weighing 8 Ib stretches a spring 3 in. The spring—mass sys-
tem resides in a medium with a damping constant of 2 lb-sec/ft. If
the mass is released from its equilibrium position with a velocity
of 4 in./sec in the downward direction, find the time required for
the mass to return to its equilibrium position for the first time.

A weight suspended from a spring executes damped vibrations with
a period of 2 sec. If the damping factor decreases by 90% in 10 sec,
find the acceleration of the weight when it is 3 in. below its equilib-
rium position and is moving upward with a speed of 2 ft/sec.

A 10-1b weight stretches a spring 2 ft. If the weight is pulled down
6 in. below its equilibrium position and released, find the highest
point reached by the weight. Assume the spring—mass system re-
sides in a medium offering a resistance of 10/V/g Ib times the in-
stantaneous velocity in feet per second.



19.

20.

21.

22.

23.

An LRC circuit is set up with an inductance of 1/5 henry, a resist-
ance of 1 ohm, and a capacitance of 5/6 farad. Assuming the initial
charge is 2 coulombs and the initial current is 4 amperes, find the
solution function describing the charge on the capacitor at any time.
What is the charge on the capacitor after a long period of time?

An (open) electrical circuit consists of an inductor, a resistor, and
a capacitor. There is an initial charge of 2 coulombs on the capac-
itor. At the instant the circuit is closed, a current of 3 amperes is
present but no external voltage is being applied. In this circuit the
voltage drops at three points are numerically related as follows:
across the capacitor, 10 times the charge; across the resistor, 4
times the instantaneous change in the charge; and across the in-
ductor, 2 times the instantaneous change in the current. Find the
charge on the capacitor as a function of time.

A 16-1b weight stretches a spring 4 ft. This spring—mass system is
in a medium with a damping constant of 4.5 1b-sec/ft, and an ex-
ternal force given by f(f) = 4 + e % (in pounds) is being ap-
plied. What is the solution function describing the position of the
mass at any time if the mass is released from 2 ft below the equi-
librium position with an initial velocity of 4 ft/sec downward?

A 10-kg mass is attached to a spring having a spring constant of
140 N/m. The mass is started in motion from the equilibrium po-
sition with an initial velocity of 1 m/sec in the upward direction
and with an applied external force given by f(#) = 5 sin 7 (in new-
tons). The mass is in a viscous medium with a coefficient of re-
sistance equal to 90 N-sec/m. Formulate an initial value problem
that models the given system; solve the model and interpret the
results.

A 2-kg mass is attached to the lower end of a coil spring sus-
pended from the ceiling. The mass comes to rest in its equilibrium

Euler Equations

17.4

24.

25S.

26.
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position thereby stretching the spring 1.96 m. The mass is in a
viscous medium that offers a resistance in newtons numerically
equal to 4 times the instantaneous velocity measured in meters
per second. The mass is then pulled down 2 m below its equilib-
rium position and released with a downward velocity of 3 m/sec.
At this same instant an external force given by f(f) = 20 cos # (in
newtons) is applied to the system. At the end of 7 sec determine
if the mass is above or below its equilibrium position and by how
much.

An 8-1b weight stretches a spring 4 ft. The spring—mass system re-
sides in a medium offering a resistance to the motion equal to 1.5
times the instantaneous velocity, and an external force given by
f(t) = 6 + e~ (in pounds) is being applied. If the weight is re-
leased at a position 2 ft above its equilibrium position with down-
ward velocity of 3 ft/sec, find its position relative to the equilib-
rium after 2 sec have elapsed.

Suppose L = 10 henrys, R = 10 ohms, C = 1/500 farads,
E = 100 volts, g(0) = 10 coulombs, and ¢'(0) = i(0) = 0. For-
mulate and solve an initial value problem that models the given
LRC circuit. Interpret your results.

A series circuit consisting of an inductor, a resistor, and a capaci-
tor is open. There is an initial charge of 2 coulombs on the capac-
itor, and 3 amperes of current is present in the circuit at the instant
the circuit is closed. A voltage given by E(f) = 20 cos ¢ is ap-
plied. In this circuit the voltage drops are numerically equal to the
following: across the resistor to 4 times the instantaneous change
in the charge, across the capacitor to 10 times the charge, and
across the inductor to 2 times the instantaneous change in the cur-
rent. Find the charge on the capacitor as a function of time. Deter-
mine the charge on the capacitor and the current at time ¢+ = 10.

In Section 17.1 we introduced the second-order linear homogeneous differential equation

Py"(x) + Q()y'(x) + Rx)p(x) = 0

and showed how to solve this equation when the coefficients P, O, and R are constants. If
the coefficients are not constant, we cannot generally solve this differential equation in
terms of elementary functions we have studied in calculus. In this section you will learn
how to solve the equation when the coefficients have the special forms

P(x) = ax?,

and

Ox) = bx, R(x) = ¢,

where a, b, and c are constants. These special types of equations are called Euler equa-
tions, in honor of Leonhard Euler who studied them and showed how to solve them. Such
equations arise in the study of mechanical vibrations.

The General Solution of Euler Equations

Consider the Euler equation

ax®y" + bxy’ + cy =0, x> 0. (1)
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To solve Equation (1), we first make the change of variables
z=Inx and y(x) = Y(2).

We next use the chain rule to find the derivatives y'(x) and »"(x):
’ — i — i @ — ! l
y(x) - de(Z) - dZY(Z)dx - Y(Z)x
and
" _ir _ir lz_ir l/r QZ_L! L!I
y (X) - dxy (X) - de (Z)x sz (Z) + xY (Z)dx xz Y (Z) + sz (Z)

Substituting these two derivatives into the left-hand side of Equation (1), we find
ax®y" + bxy' + ¢y = ax? (—12 Y'(z) + % Y”(z)> + bx <)1€ Y’(z)) + cY(2)
X x

=aY"(2) + (b — a)Y'(2) + c¥(2).

Therefore, the substitutions give us the second-order linear differential equation with con-
stant coefficients

a¥"(z) + (b — a)Y'(z) + c¥(z) = 0. 2)

We can solve Equation (2) using the method of Section 17.1. That is, we find the roots to
the associated auxiliary equation

ar’ + (b —ayr+c=0 (3)
to find the general solution for Y(z). After finding Y(z), we can determine y(x) from the
substitution z = In x.

EXAMPLE 1 Find the general solution of the equation x2y” + 2xy" — 2y = 0.
Solution This is an Euler equation witha = 1, b = 2, and ¢ = —2. The auxiliary equa-
tion (3) for Y(z) is
P Q-r—=2=F—-1)r+2) =0,
with roots » = —2 and » = 1. The solution for Y(z) is given by
Y(z) = cie” ¥ + cpe’.
Substituting z = In x gives the general solution for y(x):

Y(x) = cre 2 + el =0 x72 + ox [

EXAMPLE 2 Solve the Euler equation x2y” — 5xy’ + 9y = 0.

Solution Sincea = 1,b = —5, and ¢ = 9, the auxiliary equation (3) for ¥(z) is
P+ (=5-1yr+9=@F-3)>%=0.
The auxiliary equation has the double root » = 3 giving
Y(z) = cie¥ + ¢, ze*
Substituting z = In x into this expression gives the general solution

3lnx

y(x) = 13" + calnx e = ¢ xF + px’Inx m



10

VAV

EXAMPLE 3

17.4 Euler Equations 17-25

Find the particular solution to x%y” — 3xy’ + 68y = 0 that satisfies the

initial conditions y(1) = 0 and y'(1) = 1.

Solution Here a = 1, b =

gives

—3, and ¢ = 68 substituted into the auxiliary equation (3)

Z—4r+68=0.

The roots are » = 2 + 8iand » = 2 — 8i giving the solution

Y(z) = e%(cy cos 8z + ¢, sin 82).

Substituting z = In x into this expression gives

y(@) = 2¥(cy cos (8 Inx) + ¢y sin (8 Inx)).

From the initial condition y(1) = 0, we see that ¢; = 0 and

Y(x) = c;x2 sin (8 In x).

To fit the second initial condition, we need the derivative

¥'(x) = c2(8x cos (8 Inx) + 2xsin (8 Inx)).

Since y'(1) = 1, we immediately obtain ¢, = 1/8. Therefore, the particular solution satis-
fying both initial conditions is

of 2 N/ 6 \s8 10

X2
_5F y= §sm(8lnx)

—-10+

X

Since —1 =

FIGURE 17.8 Graph of the solution to

Example 3.

EXERCISES 17.4

sin(8Inx) =

yx) = x sin (8 In x).

1, the solution satisfies

2 2
X X
3 = yx) = g
A graph of the solution is shown in Figure 17.8. ]

In Exercises 1-24, find the general solution to the given Euler
equation. Assume x > 0 throughout.

1. 2”-i-2xy—2y—0 2.
3. —6y=0 4.
5. x3" —5xy' + 8y =0 6.
7. 3x%" + 4x) =0 8.
9. x" —xy' +y=0 10.
11. x5 —x' + 5y =0 12.

13. X" +3x + 10y =0 14.
15. 4x2 "+ 8y +5 =0 16.
17. x5 + 3" +y =0 18.
19. x5 +x' =0 20.

2y”-i-xy'—4y=0
X"+ xy —y=0
"+ Ty’ + 2y =0
X"+ 6xy’ + 4y =0
xy —xy'+2y=0
X" 4+ ey’ + 13y =0
x2" = 5xy’ + 10y =0
dx?y" — dxy' + 5y =0
X" = 3xy" + 9y =0
4" +y =0

21. 9x%y" + 155" + y =0
22. 16x%" — 8xy' + 9y =0
23. 16x%" + 56xy" + 25y =0
24. 4x%y" — 16xy" + 25y =0

In Exercises 25-30, solve the given initial value problem.
25. X" + 30y =3y =0, p)=1,y1)= -1
26. 6x2 T4+ Ty =2y =0, y1)=0,y(1)=1
27. X" —xy' +y =0, y(1)=1,y (1) =1

28. X" + Txy' + 9y =0, p(1)=1,y(1)=0

29. x5 —xy' + 2y =0, y1)=-1,y () =1
30. X" + 30 + 5y =0, p()=1,y(1)=0
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Power-Series Solutions

In this section we extend our study of second-order linear homogeneous equations with
variable coefficients. With the Euler equations in Section 17.4, the power of the variable x
in the nonconstant coefficient had to match the order of the derivative with which it was
paired: x> with y”, x! with y’, and x°(=1) with y. Here we drop that requirement so we
can solve more general equations.

Method of Solution

The power-series method for solving a second-order homogeneous differential equation
consists of finding the coefficients of a power series

o0
y(x) = 2 epx" = ¢y + oox + ex? - (1)
n=0

which solves the equation. To apply the method we substitute the series and its derivatives
into the differential equation to determine the coefficients ¢y, ¢y, ¢z, . . . . The technique for
finding the coefficients is similar to that used in the method of undetermined coefficients
presented in Section 17.2.

In our first example we demonstrate the method in the setting of a simple equation
whose general solution we already know. This is to help you become more comfortable
with solutions expressed in series form.

EXAMPLE 1  Solve the equation y” + y = 0 by the power-series method.

Solution 'We assume the series solution takes the form of

o0
y= 2 enx”
n=0
and calculate the derivatives
o0 [o¢]
y = E ne,x" ! and y" = 2 n(n — e,x" 2.
n=1 n=2
Substitution of these forms into the second-order equation gives us
o0 o0
E n(n — De,x" 2 + E cpx" = 0.
n=2 n=0
Next, we equate the coefficients of each power of x to zero as summarized in the following
table.
Power of x Coefficient Equation
x° 2(l)cy; +¢co =0 or c = —% co
1
x! 32)c; + ¢ =0 or 6= 350
x? 4B3)cs + ¢ =0 or cy = —ﬁ (65}
1
x> 54)cs + ¢35 =0 or €= ~5.44
x* 6(5)ce + ¢4 =0 or ce = b cy
] 6-5
n—2 — — 1
X nn — e, + ch—2 =0 or cp =
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From the table we notice that the coefficients with even indices (n = 2k, k = 1,2,3,...)
are related to each other and the coefficients with odd indices (n = 2k + 1) are also inter-
related. We treat each group in turn.

Even indices: Here n = 2k, so the power is x>~ 2. From the last line of the table, we have

2k(2k - 1)62k + Cof—2 — 0

or

-1
€% T TOk2k — 1) 2

From this recursive relation we find

_ 1 1 1] 1
Cz"‘{ 2h(2k — I)M (2k—2><2k—3>]”[ 4(3)” 2}"’0

G
~ k!

Co.

Odd indices: Here n = 2k + 1, so the power is x2*~!. Substituting this into the last
line of the table yields

(2/{ + 1)(2k)€2k+1 + Co—1 — 0
or

I S
Cou+1 = (2k + 1)(2k) Cok—1-

Thus,

B 1 1 1 1
Cokt1 = { 2k + 1)(2]{)H 2k — D2k — 2)}'[ 5(4)” 3(2)}01

G
T @k+ €

Writing the power series by grouping its even and odd powers together and substitut-
ing for the coefficients yields

n=0
00
— 2k 2k+1
= E CopX + 2 Cof+1X
k=0 k

From Table 9.1 in Section 9.10, we see that the first series on the right-hand side of the last
equation represents the cosine function and the second series represents the sine. Thus, the
general solution to " + y = 0is

y = ¢pcosx + cpsinx. ]
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EXAMPLE 2  Find the general solution to y” + xy’ + y = 0.

Solution We assume the series solution form

o0
y = E cpx”
n=0
and calculate the derivatives
o0 o0
y' = E nepx" ! and y' = En(n — Depx" 2
n=1 n=2
Substitution of these forms into the second-order equation yields
o0 o0 o0
E n(n — l)c,lx'”2 + 2 ne,x" + E c,x" = 0.
n=2 n=1 n=0

We equate the coefficients of each power of x to zero as summarized in the following table.

Power of x Coefficient Equation
x° 2(1)c; +co=0 or ¢ = —% co
x! 3+ ata=0 o ¢=-3c
x2 4B3)cy + 2¢0 + ¢, =0 or ¢4 = —% c
x3 5(@)cs + 3¢c3 +¢c3=0 or c¢5= —% 3
x* 6(5)ce +4cy + ¢4 =0 or ¢g= —% cq
n 1
X n+2)n+ Deyso t(n+ e, =0 OF Cut2 = — 5 Cn

From the table notice that the coefficients with even indices are interrelated and the coeffi-
cients with odd indices are also interrelated.

Even indices: Here n = 2k — 2, so the power is x2*~2. From the last line in the table,
we have

1
Cok = T C2%-2e

From this recurrence relation we obtain

S D U Y (S SR DU (D Y R 0 Y
2% 2%k )\ 2k -2 6)\"4)\72)
(—D*
=—— .
Q)(#)(6) -~ (2k)
Odd indices: Here n = 2k — 1, so the power is x**~!. From the last line in the table,
we have

1
Cok+1 = Top g %l

From this recurrence relation we obtain

o () o) ()

_ (—1)¥
T 3G Qk+ D)
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Writing the power series by grouping its even and odd powers and substituting for the
coefficients yields

y= E cux? + E o x 2!
k=0 k=0
< (_l)k 2k < (_l)k 2%+1
Do 2@ 2k C% B35 Ck+ 1)

EXAMPLE 3  Find the general solution to
(1 —x¥" —6xy —4y =0, P <I.

Solution Notice that the leading coefficient is zero when x = +1. Thus, we assume the
solution interval /: —1 < x < 1. Substitution of the series form

o0
y= 2"
n=0
and its derivatives gives us

[o@] [o¢] (o]
(1 - xz)z n(n — De,x" 2 — 62 ne,x" — 42 cpx" =0,
n=2 n=1 n=0

2 n(n — Nex" 2 — 2 n(n — Dec,x" — 62 ne,x" — 42 cpx" = 0.
n=1 n=0

n=2 n=2

Next, we equate the coefficients of each power of x to zero as summarized in the following
table.

Power of x Coefficient Equation
x° 2(1)cs —4c) =0 or cy = %co
x! 3(2)cs —6(1)cy —4e1 =0 o e =3¢
x? 4(3)cs — 2(1)cy — 6(2)cy — 4cy = or cy = gcz
x? 5#)cs — 3(2)cs — 6(3)c; —4e3 =0 or cs = %03
x" (n+2)(n+ Vcpep — [0(n — 1) + 6n + 4Jc, = 0
n+2)n+ Deyso —(m+ 4+ e, =0 or cuen = Z i gcn

Again we notice that the coefficients with even indices are interrelated and those with odd
indices are interrelated.

Even indices: Here n = 2k — 2, so the power is x%*. From the right-hand column and
last line of the table, we get

_2k+2
Co = 72]( Cok—2

- (52)2) 5 =3) 4G

k + Do
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Odd indices: Here n = 2k — 1, so the power is x2**!. The right-hand column and last
line of the table gives us

2k +3
Ck+1 = mcﬁ—l

_ (2 +3\ (2 + 1\ (26 -1\ 7(5
2%+ 1 )\2k—1)\2k — 3 5\3 )
2% + 3

= Cq.

w

The general solution is
o]
y = 2 cpx”

[oe]
_ 2%k 2%+1
= E Cop X"+ E Cok+1X
k=0 =0

co D (k+ Dx* + ¢, 2k37+3xﬂ‘+1. n
k=0 k=0

EXAMPLE 4  Find the general solution to " — 2xy’ + y = 0.

Solution Assuming that

substitution into the differential equation gives us

[o¢]

(o¢] [oe]
E n(n — De,x" 2 — 22 ne,x" + E c,x" = 0.
n=2 n=1 n=0

We next determine the coefficients, listing them in the following table.

Power of x Coefficient Equation

x0 2(1)cs +c=0 or c = —% co

x! 32)c3 — 2¢; + ¢ =0 or = 3%01

x2 4B3)cy — 4y + =0 or cy = %cz

x> 5#4)cs — 6¢c3 + ¢33 =0 or cs = %03

x* 6(5)ce — 8¢c4 + c4 =0 or ce = 675 cq

X 1+ 20+ Dewss — @n — Dey =0 or 2n — 1

2 = Gk o+ O
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From the recursive relation

oy = 2n — 1 ‘
T+ )+ 1)

we write out the first few terms of each series for the general solution:

y = co<1 - %xz — ‘%x“ - %x6 - )
+cl<x+3l!x3+55!x5+4;?x7+'~>. u
EXERCISES 17.5
In Exercises 1-18, use power series to find the general solution of the 9. (2 — 1)y" +2xp —2y =0
differential equation. 10. "+ —x =0
Ly"+2' =0 1. (2= 1" — 6y =0
2"+ +y=0 12. 0" — (x +2) + 2y =0
3.+ 4 =0 13, (2 = 1" + 4’ + 20 =0
4. =3y +2y=0 14. y" —2xy' + 4y =0
5.y~ 29/ +2y=0 15. 3" = 20" + 3y =0
6.y —x' +y=0 16. (1 — x2)" —xp' + 4y = 0
7. A +xp"—y=0 17. y" —x)/ +3y =0
8. (1 —x%)" —4xy’ + 6y =0 18. 33" — 4y’ + 6y = 0





